欢迎访问林草资源研究

林草资源研究 ›› 2023›› Issue (5): 142-147.doi: 10.13466/j.cnki.lczyyj.2023.05.017

• 研究简报 • 上一篇    下一篇

一类调查与二类调查森林蓄积量数据对接方案分析研究

白星雯1(), 胡晟2, 布日古德1, 阳帆1()   

  1. 1.国家林业和草原局林草调查规划院,北京 100714
    2.国家林业和草原局产业发展规划院,北京 100010
  • 收稿日期:2023-07-28 修回日期:2023-09-01 出版日期:2023-10-28 发布日期:2023-12-20
  • 通讯作者: 阳帆,高级工程师,博士,主要从事森林资源监测及经营管理研究与实践工作。Email:yang2170057@163.com
  • 作者简介:白星雯,工程师,主要从事森林资源监测及经营管理研究与实践工作。Email:2867101753@qq.com

Analysis and Research on the Docking Scheme of Forest Stock Data Between Continuous Inventory of Forest Resources and Forest Resource Planning and Design Investigation

BAI Xingwen1(), HU Sheng2, BU Rigude1, YANG Fan1()   

  1. 1. Academy of Forestry Inventory and Planning,National Forestry and Grassland Administration,Beijing 100714,China
    2. Industry Development and Planning Institute,National Forestry and Grassland Administration,Beijing 100010,China
  • Received:2023-07-28 Revised:2023-09-01 Online:2023-10-28 Published:2023-12-20

摘要:

我国一类调查(森林资源连续清查)与二类调查(森林资源规划设计调查)两种监测体系因调查目的及方法不同,因此监测获取的森林资源数据存在不一致。鉴于此,以保定市为例,开展一类调查与二类调查森林蓄积量数据对接方案分析研究。采用非线性指数模型分树种组构建小班蓄积量预估模型,通过模型反演更新调整保定市内所有小班蓄积量信息,从而获取保定市各县(市、区)森林蓄积量信息;采取平差调整法实现保定市一类调查与二类调查蓄积量监测值对接。研究结果显示:1)分树种组研建的小班蓄积量预估模型评价指标均表现较好,表明模型具有较好的预估能力;2)相比二类调查而言,采用小班蓄积量预估模型监测获取的保定市森林单位蓄积量(34.98 m3/hm2)与一类调查蓄积量监测值对比,其精度为91.06%,较大程度上降低了相对误差,表明了小班蓄积量预估模型监测值的可靠性;3)对模型预估值进一步进行平差调整后,最终实现了一类调查与二类调查蓄积量监测成果对接,表明了研究方案的可行性。可见,研究的技术方案可为各省级行政区历年小班蓄积量监测数据对接更新及今后实现“一套数,一张图”提供技术方法参考。

关键词: 蓄积量监测, 蓄积量预估模型, 森林资源连续清查, 森林资源规划设计调查

Abstract:

Because of the different purposes and methods of the two monitoring systems,namely the continuous forest resources inventory and forest management inventory,the data of forest resources obtained by the two monitoring systems are inconsistent.In view of this,this paper took Baoding City as an example to carry out analysis and research on the docking scheme of forest stock data between continuous forest resources inventory and forest management inventory.In order to obtain the forest stock information of each county(city and district)in Baoding city,thesubcompartment stock volume prediction model was constructed by using nonlinear index model and tree species groups.The adjustment method was adopted to realize the connection between the continuous inventory of forest resources and the monitoring value of the forest resources planning and design investigation.The results showed as follows:1)the evaluation indexes of the subcompartment stock volume prediction model developed based on tree species groups all performed well,indicating that the model had good prediction ability;2)Compared with the forest management inventory,the forest stockper unit(34.98 m3/hm2)of Baoding City monitored by the subcompartment stock volume prediction modelshowed an accuracy of 91.06% with the monitoring valueof thecontinuous forest resource inventory stock,which greatly reduced the relative error,indicating the reliability of the monitoring value of the subcompartment stock volume prediction model;3)After further adjustment of the model prediction,the connection between the continuous forest resources inventory and forest management inventory was finally realized,indicating the feasibility of the research scheme.The technical scheme studied in this paper can provide technical reference for updating the monitoring data of subcompartment stock volumein all provinces over the years and realizing "one set of data,one piece of map" in the future.

Key words: inventory monitoring, stock volume prediction model, continuous forest resources inventory, forest management inventory

中图分类号: