林草资源研究 ›› 2024›› Issue (1): 102-110.doi: 10.13466/j.cnki.lczyyj.2024.01.014
李仲牧1,2(), 车凤仙3, 高成杰2, 李瑾2, 王璐2, 崔凯2()
收稿日期:
2023-11-07
修回日期:
2024-01-08
出版日期:
2024-02-28
发布日期:
2024-03-22
通讯作者:
崔凯,研究员,博士,主要研究方向:竹类和针叶树种遗传育种。Email:作者简介:
李仲牧,硕士研究生,主要研究方向:森林培育。Email:基金资助:
LI Zhongmu1,2(), CHE Fengxian3, GAO Chengjie2, LI Jin2, WANG Lu2, CUI Kai2()
Received:
2023-11-07
Revised:
2024-01-08
Online:
2024-02-28
Published:
2024-03-22
摘要:
云南松(Pinus yunnanensis)是我国西南地区特有的乡土树种,分布于青藏高原东南缘,其遗传退化问题严重。为加速育种进程和拓宽云南松的遗传资源,基于对营养生长性状(树高、地径、长冠径、短冠径、枝下高、当年生主枝长、当年生侧枝数)和生殖生长性状(球果数量)的系统分析,对95个云南松半同胞家系开展早期评价与选择。结果表明:1)云南松在各家系间营养生长性状存在显著差异,表明其具有丰富的遗传变异和选择潜力;2)表型性状的表型变异系数和遗传力分别为21.60%~86.07%和0.75~0.78,表明云南松各性状变异较大,且受遗传控制较强;3)表型性状之间具有较强的相关性,通过对营养生长性状的聚类分析,将95个家系分为3类;4)通过对云南松营养生长性状进行隶属函数分析,筛选出10个优良家系,其树高的遗传增益和实际增益最高为19.63%和25.17%,地径的为12.39%和15.89%。云南松半同胞家系之间存在丰富的表型变异,基于营养生长性状筛选出10个优良家系,该结果可为云南松良种选育提供理论基础。
中图分类号:
李仲牧, 车凤仙, 高成杰, 李瑾, 王璐, 崔凯. 云南松半同胞家系表型变异与早期选择[J]. 林草资源研究, 2024,(1): 102-110.
LI Zhongmu, CHE Fengxian, GAO Chengjie, LI Jin, WANG Lu, CUI Kai. Phenotypic Variation and Early Selection of Half-sib Families of Pinus yunnanensis[J]. Forest and Grassland Resources Research, 2024,(1): 102-110.
表1
数据处理公式
公式名称 | 公式 | 参数说明 | 参考文献 |
---|---|---|---|
混合线性模型 | Yijk=μ+Bi+Fj+BFij+eijk | Yijk为第i区组第j家系第k单株的观测值;μ为群体平均值;Bi为第i区组效应;Fj为第j家系的效应;BFij为第i家系和第j区组的互作效应;eijk为随机误差。此外,μ和Bi为固定效应,其余为随机效应。 | [ |
遗传力 | n为小区单株数的调和值;b为区组数; | [ | |
表型变异系数 | VCVP= | [ | |
表型相关性 | rp=Covp12/ | Covp12为表型性状的协方差; | [ |
隶属函数 | μA=(Xi-Xmin)/(Xmax-Xmin) | Xi为表型性状的测量值;Xmin为表型性状的最小值;Xmax为表型性状的最大值。 | |
遗传增益 | G=(Xi- | [ | |
实际增益 | ΔG=(Xi- | [ |
表2
云南松表型性状的方差分析
性状 | F | 方差分量百分比% | |||||
---|---|---|---|---|---|---|---|
家系 | 区组 | 家系×区组 | 家系 | 区组 | 家系×区组 | ||
树高 | 3.784** | 28.536** | 3.393** | 10.60 | 79.90 | 9.50 | |
地径 | 3.896** | 45.086** | 3.455** | 7.43 | 85.98 | 6.59 | |
长冠径 | 3.819** | 28.295** | 3.299** | 10.79 | 79.90 | 9.32 | |
短冠径 | 3.807** | 52.492** | 3.209** | 6.40 | 88.21 | 5.39 | |
枝下高 | 2.310** | 7.490** | 1.888** | 19.76 | 64.08 | 16.16 | |
当年生侧枝数 | 2.999** | 5.932** | 2.771** | 25.63 | 50.69 | 23.68 | |
当年生主枝长 | 3.897** | 26.112** | 3.657** | 11.58 | 77.56 | 10.86 | |
球果数量 | 1.129 | 0.235 | 0.520 | 59.91 | 12.50 | 27.60 |
表3
云南松表型性状的描述性统计
性状 | 变化范围 | 均值 | 标准差 | 表型变异系数/% | 遗传力 |
---|---|---|---|---|---|
树高/cm | 106.55~203.13 | 164.43 | 45.98 | 27.96 | 0.78 |
地径/mm | 41.90~ 67.17 | 58.34 | 12.60 | 21.60 | 0.78 |
长冠径/cm | 76.58~159.53 | 128.07 | 36.90 | 28.81 | 0.78 |
短冠径/cm | 66.18~148.60 | 111.51 | 35.30 | 31.66 | 0.78 |
枝下高/cm | 23.47~ 48.90 | 36.13 | 13.37 | 37.01 | 0.76 |
当年生侧枝数 | 2.82~ 7.39 | 3.60 | 1.38 | 38.33 | 0.76 |
当年生主枝长/cm | 37.17~ 83.00 | 58.59 | 20.48 | 34.95 | 0.77 |
球果数量 | 0~ 28.00 | 6.10 | 5.25 | 86.07 | 0.75 |
表4
云南松优良家系表型性状的实际增益
家系 | 树高 | 地径 | 长冠径 | 短冠径 | 枝下高 | 当年生侧枝数 | 当年生主枝长 | 球果数量 |
---|---|---|---|---|---|---|---|---|
11 | 25.17 | 10.87 | 19.61 | 27.62 | -34.93 | 3.66 | 38.88 | -37.26 |
18 | 23.56 | 15.89 | 20.37 | 22.68 | -13.12 | 16.21 | 32.55 | -10.37 |
25 | 9.77 | 14.61 | 10.97 | 14.76 | -14.04 | -1.43 | 19.12 | -100.00 |
27 | 22.27 | 15.15 | 26.09 | 35.08 | -6.04 | 16.29 | 20.99 | 34.44 |
44 | 18.49 | 12.34 | 15.33 | 14.84 | 7.94 | -0.51 | 22.54 | 79.26 |
50 | 13.91 | 2.48 | 15.31 | 16.32 | 16.40 | 3.57 | 16.19 | -19.34 |
56 | 15.65 | 12.71 | 19.01 | 21.40 | 14.36 | 6.43 | 19.91 | 7.55 |
68 | 15.33 | 14.15 | 17.48 | 21.98 | 6.38 | 3.66 | 21.84 | -37.26 |
83 | 10.94 | 13.64 | 14.44 | 17.84 | 21.22 | 0.05 | 2.65 | -10.37 |
96 | 12.08 | 5.89 | 19.74 | 19.39 | 7.32 | 9.01 | 12.68 | 85.98 |
表5
云南松优良家系表型性状的遗传增益
家系 | 树高 | 地径 | 长冠径 | 短冠径 | 枝下高 | 当年生侧枝数 | 当年生主枝长 | 球果数量 |
---|---|---|---|---|---|---|---|---|
11 | 19.63 | 8.48 | 15.30 | 21.55 | -26.55 | 2.78 | 29.94 | -27.95 |
18 | 18.37 | 12.39 | 15.89 | 17.69 | -9.97 | 12.32 | 25.06 | -7.78 |
25 | 7.62 | 11.39 | 8.56 | 11.51 | -10.67 | -1.08 | 14.72 | -75.00 |
27 | 17.37 | 11.82 | 20.35 | 27.36 | -4.59 | 12.38 | 16.16 | 25.83 |
44 | 14.43 | 9.62 | 11.96 | 11.57 | 6.03 | -0.39 | 17.36 | 59.44 |
50 | 10.85 | 1.93 | 11.94 | 12.73 | 12.46 | 2.71 | 12.47 | -14.50 |
56 | 12.20 | 9.91 | 14.83 | 16.70 | 10.91 | 4.89 | 15.33 | 5.66 |
68 | 11.96 | 11.04 | 13.63 | 17.14 | 4.85 | 2.78 | 16.82 | -27.95 |
83 | 8.53 | 10.64 | 11.27 | 13.92 | 16.13 | 0.03 | 2.04 | -7.78 |
96 | 9.42 | 4.60 | 15.39 | 15.13 | 5.56 | 6.85 | 9.76 | 64.48 |
[1] | 李鑫, 李昆, 段安安, 等. 不同地理种源云南松幼苗生物量分配及其异速生长[J]. 北京林业大学学报, 2019, 41(4):41-50. |
[2] |
Liu Zirui, Gao Chengjie, Li Jin, et al. Phenotypic diversity analysis and superior family selection of industrial raw material forest species-Pinus yunnanensis Franch[J]. Forests, 2022, 13(4):618.
doi: 10.3390/f13040618 |
[3] | 金振洲, 彭鉴. 云南松[M]. 昆明: 云南科技出版社, 2004. |
[4] | Gao Chengjie, Liu Fangyan, Zhang Chunhua, et al. Germination responses to water potential and temperature variation among provenances of Pinus yunnanensis[J]. Flora, 2021,276-277. |
[5] |
Cai Nianhui, Xu Yulan, Cheng Shi, et al. Variation in seed and seedling traits and their relations to geo-climatic factors among populations in Yunnan Pine(Pinus yunnanensis)[J]. Journal of Forestry Research, 2016, 27(5):1009-1017.
doi: 10.1007/s11676-016-0228-z |
[6] |
Xu Yulan, Woeste Keith, Cai Nianhui, et al. Variation in needle and cone traits in natural populations of Pinus yunnanensis[J]. Journal of Forestry Research, 2015, 27(1):41-49.
doi: 10.1007/s11676-015-0153-6 |
[7] | Liu Zirui, Li Jin, Gao Chengjie, et al. The cellulose-lignin balance mediated by auxin signal transduction affects the twisted growth of Yunnan pine trunk[J]. Scientia Horticulturae, 2023,317. |
[8] | 蔡年辉, 许玉兰, 李根前, 等. 云南松茎干弯曲、扭曲特性的研究现状及展望[J]. 林业调查规划, 2016, 41(6):19-23. |
[9] | 许玉兰. 云南松天然群体遗传变异研究[D]. 北京: 北京林业大学, 2015. |
[10] | 郑畹, 舒筱武, 冯弦. 云南松优良种源生长量早期选择的研究[J]. 云南林业科技, 1998(3):13-18. |
[11] | 谷丽萍, 郑畹, 李思广, 等. 云南松不同种源和家系苗期生长性状分析[J]. 西南林业大学学报, 2016, 36(02):84-88. |
[12] | 李品荣, 陈强, 常恩福, 等. 云南松母树林的营建技术[J]. 林业科技开发, 2005(4):40-42. |
[13] | 何富强. 云南松无性系种子园营建技术及其研究[J]. 云南林业科技, 1997(1):2-9. |
[14] | 陈强, 车凤仙, 刘永刚, 等. 弥渡云南松无性系种子园子代生长量遗传分析[J]. 西部林业科学, 2020, 49(4):8-15. |
[15] | Diao Shu, Hou Yimei, Xie Yunhui, et al. Age trends of genetic parameters,early selection and family by site interactions for growth traits in Larix kaempferi open-pollinated families[J]. BMC Gene-tics, 2016, 17(1):104. |
[16] | 季孔庶, 樊明亮, 徐立安. 马尾松无性系种子园半同胞子代变异分析和家系选择[J]. 林业科学, 2005, 41(6):43-49. |
[17] |
Dong Mingliang, Fan Yingming, Wu Zhihui, et al. Age-age correlations and early selection for growth traits in 40 half-sib families of Larix principis-rupprechtii[J]. Journal of Forestry Research, 2018, 30(6):2111-2117.
doi: 10.1007/s11676-018-0706-6 |
[18] | Kunmar D, Singh N. Age-age correlation for early selection of clones of Populus in India[J]. Silvae Genetica, 2001, 50(3-4):103-108. |
[19] | Lima J L, Souza J C D, Ramalho M A P, et al. Early selection of parents and trees in Eucalyptus full-sib progeny tests[J]. Crop Breeding and Applied Biotechnology, 2011,(11):10-16. |
[20] |
Pan Yanyan, Li Shuchun, Wang Chenglu, et al. Early evaluation of growth traits of Larix kaempferi clones[J]. Journal of Forestry Research, 2017, 29(4):1031-1039.
doi: 10.1007/s11676-017-0492-6 |
[21] |
Gouv A L, Silva G A, Verardi C K, et al. Rubber tree early selection for yield stability in time and among locations[J]. Euphytica, 2013, 191(3):365-373.
doi: 10.1007/s10681-013-0874-6 |
[22] |
Lepoittevin C, Rousseau J P, Guillenmin A, et al. Genetic parameters of growth,straightness and wood chemistry traits in Pinus pinaster[J]. Annals of Forest Science, 2011, 68(4):873-884.
doi: 10.1007/s13595-011-0084-0 |
[23] | 李帅锋, 苏建荣, 朗学东, 等. 思茅松自由授粉家系遗传参数与早期选择分析[J]. 林业科学研究, 2017, 30(6):929-935. |
[24] | 白天道, 徐立安, 王章荣, 等. 马尾松实生种子园自由授粉子代测定及亲本家系选择增益估算[J]. 林业科学研究, 2012, 25(4):449-455. |
[25] | 金国庆, 秦国峰, 刘伟宏, 等. 不同林龄马尾松的种源选择效果[J]. 林业科学, 2011, 47(2):39-45. |
[26] |
王云鹏, 张蕊, 周志春, 等. 10年生木荷生长和材性性状家系变异及选择[J]. 南京林业大学学报(自然科学版), 2020, 44(5):85-92.
doi: 10.3969/j.issn.1000-2006.202003086 |
[27] | 王云鹏, 张蕊, 周志春, 等. 木荷优树自由授粉家系早期生长性状遗传变异动态规律[J]. 林业科学, 2020, 56(9):77-86. |
[28] | 魏嘉彤, 陈思琪, 芦贤博, 等. 基于生长与木材性状的红松优良种源评价选择[J]. 北京林业大学学报, 2022, 44(3):12-23. |
[29] | Palle S R, Seeve C M, Eckert A J, et al. Natural variation in expression of genes involved in xylem development in loblolly pine(Pinus taeda L.)[J]. Tree Genetics & Genomes, 2011, 7(1):193-206. |
[30] |
Zhang Zhen, Jin Guoqing, Feng Zhongping, et al. Joint influence of genetic origin and climate on the growth of Masson pine(Pinus massoniana Lamb.)in China[J]. Scientific Reports, 2020, 10(1):4653.
doi: 10.1038/s41598-020-61597-9 pmid: 32170277 |
[31] | Makouanzi Ekomono C G, Rambolarimanana T, Bouvet J M. Preponderance of additive and non-additive variances for growth,ecophysiological and wood traits in Eucalyptus hybrid genotype-by-spacing interaction[J]. Tree Genetics & Genomes, 2022, 18(4):32. |
[32] |
Maniee M, Kahrizi D, Mohammadi R. Genetic variability of some morpho-physiological traits in durum wheat(Triticum turgidum var.durum)[J]. Journal of Applied Sciences, 2009, 9(7):1383-1387.
doi: 10.3923/jas.2009.1383.1387 |
[33] |
Baltunis B S, Gapare W, Wu H. Genetic parameters and genotype by environment interaction in radiata pine for growth and wood quality traits in Australia[J]. Silvae Genetica, 2010, 59(1-6):113-124.
doi: 10.1515/sg-2010-0014 |
[34] |
Li Yanjie, Ding Xianyin, Jiang Jingmin, et al. Inheritance and correlation analysis of pulpwood properties,wood density,and growth traits of Slash Pine[J]. Forests, 2020, 11(5):493.
doi: 10.3390/f11050493 |
[35] | Rweyongeza D, Yeh F, Dancik B, et al. Genetic variation in height,branch and needle lengths of Pinus sylvestris L.from Siberia tested in Alberta,Canada[J]. Silvae Genetica, 2003, 52(2):52-59. |
[36] |
Mckeand S E, Li B, Grissom J E, et al. Genetic parameter estimates for growth traits from Diallel tests of Loblolly Pine throughout the Southeastern United States[J]. Silvae Genetica, 2008, 57(1-6):101-110.
doi: 10.1515/sg-2008-0016 |
[37] | Salaya-Domnguez J M, LÓpez-uptin J, Vargas-Hernández J J. Genetic and environment variation in two progeny tests of Pinus patula[J]. Agrociencia, 2012, 46(5):519-534. |
[38] |
Liang Deyang, Ding Changjun, Zhao Guanghao, et al. Variation and selection analysis of Pinus koraiensis clones in northeast China[J]. Journal of Forestry Research, 2017, 29(3):611-622.
doi: 10.1007/s11676-017-0471-y |
[39] | Spinelli V M, Dias L A S, Rocha R B, et al. Estimates of genetic parameters with selection within and between half-sib families of Jatropha curcas L[J]. Industrial Crops and Products, 2015(69):355-361. |
[40] | Kroon J, Ericsson T, Jansson G, et al. Patterns of genetic parameters for height in field genetic tests of Picea abies and Pinus sylvestris in Sweden[J]. Tree Genetics & Genomes, 2011, 7(6):1099-1111. |
[41] | Lambeth C C. Juvenile-mature correlations in Pinaceae and implications for early selection[J]. Forest Science, 1980, 26(4):571-580. |
[42] | Xiang B, Li Bailian, Isik F. Time trend of genetic parameters in growth traits of Pinus taeda L[J]. Silvae Genetica, 2003, 52(3):114-121. |
[43] |
Lai Meng, Sun Xiaomei, Chen Dongsheng, et al. Age-related trends in genetic parameters for Larix kaempferi and their implications for early selection[J]. BMC Genetics, 2014, 15(1):1-8.
doi: 10.1186/1471-2156-15-1 |
[44] | Singh N B, Singh B, Kumar D. Genetic analysis of poplar(Populus deltoides Bartr.) clones for early generation selection[J]. Indian Journal of Genetics and Plant Breeding, 2014, 74(4):487-495. |
[45] | 苑海静, 成向荣, 虞木奎, 等. 麻栎优树自由授粉家系生长性状3地点间动态变异及优良家系选择[J]. 林业科学研究, 2022, 35(2):9-18. |
[46] | Raj A, Sehgal R, Sharma K, et al. Genetic variation in wood specific gravity among half-sib families of chir pine(Pinus roxburghii sargent)[J]. New Forests, 2010,(40):213-227. |
[47] |
Xiu Wangyan, Zhu Yanfang, Chen Baihong, et al. Effects of paclobutrazol on the physiological characteristics of Malus halliana Koehne Seedlings under drought stress via principal component analysis and membership function analysis[J]. Arid Land Research and Management, 2019, 33(1):97-113.
doi: 10.1080/15324982.2018.1488300 |
[48] | 孙明升, 冯源恒, 贾婕, 等. 不同松树种间杂交类型的可育性分析[J]. 广西植物, 2021, 41(8):1270-1279. |
[49] | 蒋开彬, 杜澄举, 李赛楠, 等. 4年生火炬松半同胞家系生长和分枝性状遗传评估[J]. 北京林业大学学报, 2020, 42(9):1-10. |
[50] |
Weng H Y, Tosh K, Adam G, et al. Realized genetic gains observed in a first generation seedling seed orchard for jack pine in New Brunswick,Canada[J]. New Forests, 2008, 36(3):285-298.
doi: 10.1007/s11056-008-9100-0 |
[1] | 鲜明睿, 党巍, 代斌, 刘波, 林国刘. 川西南云南松林可燃物载量模型及其影响因素研究[J]. 林业资源管理, 2023, 0(2): 64-69. |
[2] | 王瑜, 蔡年辉, 陈林, 唐军荣, 许玉兰, 陈诗. 云南松苗木生物量分配与个体大小关系研究[J]. 林业资源管理, 2022, 0(6): 101-108. |
[3] | 何斌, 李青, 李仰征, 李望军. 黔西北地区云南松种群数量动态及空间分布格局[J]. 林业资源管理, 2021, 0(2): 149-157. |
[4] | 付志高, 李莲芳. 复合肥和磷肥混施对云南松幼林生长的短期效应分析[J]. 林业资源管理, 2021, 0(1): 189-196. |
[5] | 魏安超, 张大为. 云南松单木材积生长率模型研究[J]. 林业资源管理, 2020, 0(6): 40-46. |
[6] | 李骁尧, 阮芳芳, 刘旭升, 俞琳锋, 林起楠, 黄华国. 不同虫害程度下的云南松林分三维可视化模拟方法研究[J]. 林业资源管理, 2018, 0(3): 65-70. |
[7] | 罗恒春, 魏安超, 黄田, 余哲修, 张超. 云南松生物量和碳储量动态变化分析[J]. 林业资源管理, 2016, 0(6): 37-43. |
[8] | 陈建珍, 何超, 许彦红. 滇中一平浪林场云南松天然次生林生长规律研究[J]. 林业资源管理, 2015, 0(2): 83-88. |
[9] | 张超, 王妍, 袁华, 杜晓颖, 吴悦. 香格里拉县云南松林遥感辅助识别特征研究[J]. 林业资源管理, 2012, 0(6): 87-91. |
[10] | 李丽琴, 牛树奎, 王立明. 云南松易燃可燃物径级分布规律研究[J]. 林业资源管理, 2010, 0(3): 87-90. |
[11] | 李世友, 刘文胜, 左勇, 刘会龙, 赵文静, 刘金龙. 云南松针叶的耐火性模型研建[J]. 林业资源管理, 2009, 0(6): 113-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||