[1] |
SLOBODAN M, NENAD M, DRAGAN P, et al. Forest fire probability mapping in Eastern Serbia:Logistic regression versus random forest method[J]. Forests, 2020, 12(1):5.
|
[2] |
国家林业和草原局. 2021中国林草资源及生态状况[M]. 北京: 中国林业出版社, 2022.
|
[3] |
ZHANG Guoli, WANG Ming, LIU Kai. Forest fire susceptibility modeling using a convolutional neural network for Yunnan Province of China[J]. International Journal of Disaster Risk Science, 2019,10:386-403.
|
[4] |
中华人民共和国国务院新闻办公室. 国新办举行春夏森林草原火灾防控新闻发布会[EB/OL].(2020-04-09)[2024-03-25]. http://www.scio.gov.cn/xwfb/gwyxwbgsxwfbh/wqfbh_2284/2020n_4408/2020n04y09r/#1.
|
[5] |
中共中央办公厅, 国务院办公厅. 关于全面加强新形势下森林草原防灭火工作的意见[EB/OL].(2023-04-20)[2024-03-25]. https://www.gov.cn/zhengce/2023-04/20/content_5752410.htm?eqid=e00582e50005a3d300000005647c6f06.
|
[6] |
TAN Chaoxue, FENG Zhongke. Mapping forest fire risk zones using machine learning algorithms in Hunan Province,China[J]. Sustai-nability, 2023, 15(7):6292.
|
[7] |
GUO Futao, SU Zhangwen, WANG Guangyu, et al. Understanding fire drivers and relative impacts in different Chinese forest ecosystems[J]. Science of the Total Environment, 2017,605:411-425.
|
[8] |
AKAY A E, SAHIN H. Forest fire risk mapping by using GIS techniques and AHP method:A case study in Bodrum (Turkey)[J]. European Journal of Forest Engineering, 2019, 5(1):25-35.
|
[9] |
安佳怡, 冯仲科, 马天天, 等. 基于GIS格网的重庆合川区森林火险等级区划[J]. 中南林业科技大学学报, 2022, 42(9):91-101.
|
[10] |
王双, 张贵, 谭三清, 等. 基于空间logistic的湖南省森林火灾风险评价[J]. 中南林业科技大学学报, 2020, 40(9):88-95.
|
[11] |
TIEN Bui D, BUI Q, NGUYEN Q, et al. A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area[J]. Agricultural and Forest Meteorology, 2017,233:32-44.
|
[12] |
MA Wenyuan, FENG Zhongke, CHENG Zhuxin, et al. Identifying forest fire driving factors and related impacts in China using random forest algorithm[J]. Forests, 2020,11:507.
|
[13] |
LI Yudong, FENG Zhongke, CHEN Shilin, et al. Application of the artificial neural network and support vector machines in forest fire prediction in the Guangxi Autonomous Region,China[J]. Discrete Dynamics in Nature and Society,2020:1-14.
|
[14] |
SEVINCA V, KUCUKB O, GOLTASC M. A Bayesian network model for prediction and analysis of possible forest fire causes[J]. Forest Ecology and Management, 2020,457:117723.
|
[15] |
PHILLIPS S J. A brief tutorial on Maxent network of conservation educators and practitioners,center for biodiversity and conservation,American Museum of Natural History[J]. Lessons in Conservation, 2009,3:108-135.
|
[16] |
MAKHAYA Z, ODINDI J, MUTANGA O. The influence of bioclimatic and topographic variables on grassland fire occurrence within an urbanized landscape[J]. Scientific African, 2022,15:e01127.
|
[17] |
MISHRA B, PANTHI S, POUDEL S, et al. Forest fire pattern and vulnerability mapping using deep learning in Nepal[J]. Fire Ecology, 2023, 19(1):3.
|
[18] |
TARIQ A, SHU H, SIDDIQUI S, et al. Spatio-temporal analysis of forest fire events in the Margalla Hills,Islamabad,Pakistan using socio-economic and environmental variable data with machine learning methods[J]. Journal of Forestry Research, 2021, 33(1):183-194.
|
[19] |
KIM S J, CHUL-HEE L, KIM G S, et al. Multi-temporal analysis of forest fire probability using socio-economic and environmental variables[J]. Remote Sensing, 2019, 11(1):86.
|
[20] |
VILAR L, GÓMEZ I, MARTÍNEZ-VEGA J, et al. Multitemporal modelling of socio-economic wildfire drivers in central Spain between the 1980s and the 2000s:Comparing generalized linear models to machine learning algorithms[J]. PLos One, 2016,11:1-17.
|
[21] |
国家林业局森林防火指挥部办公室. 全国森林火险区划等级:LY/T 1063—2008[S]. 北京: 国家林业局, 2008.
|
[22] |
BANERJEE P. Maximum entropy-based forest fire likelihood mapping:Analysing the trends,distribution,and drivers of forest fires in Sikkim Himalaya[J]. Scandinavian Journal of Forest Research, 2021, 36(4):275-288.
|
[23] |
CHEN Feng, DU Yongsheng, NIU Shukui, et al. Modeling forest lightning fire occurrence in the Daxinganling Mountains of Northeastern China with MaxEnt[J]. Forests, 2015, 6(5):1422-1438.
|
[24] |
YATHISH H, ATHIRA K V, PREETHI K, et al. A comparative analysis of forest fire risk zone mapping methods with expert knowledge[J]. Journal of the Indian Society of Remote Sensing, 2019, 47(12):2047-2060.
|
[25] |
SARI F. Identifying anthropogenic and natural causes of wildfires by maximum entropy method-based ignition susceptibility distribution models[J]. Journal of Forestry Research, 2022, 34(2):355-371.
|
[26] |
艾秋月. 山东省森林火灾发生时空规律及防控对策研究[D]. 山东: 山东农业大学, 2023.
|
[27] |
胡海清. 林火生态与管理[M]. 北京: 中国林业出版社, 2005.
|
[28] |
吕常笑, 秦乃花, 李萍, 等. 山东省森林火灾时空分布及火源特征研究[J]. 森林防火, 2023, 41(2):1-6.
|
[29] |
GOLTAS M, AYBERK H, KUCUK O. Forest fire occurrence modeling in Southwest Turkey using MaxEnt machine learning technique[J]. IForest-Biogeosciences and Forestry, 2024,17:10-18.
|
[30] |
TRANG P T, ANDREW M E, CHU T, et al. Forest fire and its key drivers in the tropical forests of northern Vietnam[J]. International Journal of Wildland Fire, 2022, 31(3):213-229.
|
[31] |
JANIEC P, GADAL S. A comparison of two machine learning classification methods for remote sensing predictive modeling of the forest fire in the North-eastern Siberia[J]. Remote Sensing, 2020, 12(24):4157.
|
[32] |
ANTONELLA A D, CARLO R, MARCO C, et al. Modelling the meteorological forest fire niche in heterogeneous pyrologic conditions[J]. Plos One, 2015, 10(2):e0116875.
|