欢迎访问林草资源研究

林业资源管理 ›› 2009›› Issue (1): 107-113.doi: 10.13466/j.cnki.lyzygl.2009.01.020

• 科学技术 • 上一篇    下一篇

基于支持向量机的生态公益林遥感分类研究

任琼1, 江洪2,3, 陈健2, 李土生4, 彭世揆1, 余树全2   

  1. 1.南京林业大学森林资源与环境学院, 南京 210037;
    2.浙江林学院国际生态研究中心, 杭州 311300;
    3.南京大学国际地球系统科学研究所, 南京210093;
    4.浙江省林业厅生态中心, 杭州 310020
  • 收稿日期:2008-09-27 修回日期:2008-12-03 出版日期:2009-02-28 发布日期:2021-01-27
  • 通讯作者: 江洪。Email:hongjiang.china@gmail.com
  • 作者简介:任琼(1982-), 女, 江西新余人, 硕士, 主要从事林业遥感及地理信息系统研究。
  • 基金资助:
    科技部973 项目(2002CB111504, 2002CB410811, 2005CB422208);国家自然科学基金项目(40671132);科技部数据共享平台建设项目(2006DKA32300-08)

Remote Sensing Image Classification Based on SVM Method for Ecological Service Forests

REN Qiong, JIANG Hong, CHEN Jian, LI Tusheng, PENG Shikui, YU Shuquan   

  1. 1. Forest Resources and Environment Colleg, Nanjing Forestry University, Nanjing 210037, Jiangsu Province;
    2. International Ecological Research Cnter, Zhej iang Forestry College, Hangzhou 311300, Zhejiang Province;
    3. Institute of in ternational Earth System Science, Nanjing University, Nanjing 210093;
    4. Ecological Center, Zhijiang Provincial Forestry Department, Hangzhou 310020, Zhejiang Province, China
  • Received:2008-09-27 Revised:2008-12-03 Online:2009-02-28 Published:2021-01-27

摘要: 提出了基于支持向量机(Support Vector Machine, SVM) 的遥感影像分类方法, 结合空间特征等信息, 对IKONOS高空间分辨率影像进行分类, 实施对生态公益林的监测, 并将此分类方法与传统分类方法进行比较分析。研究结果表明, 基于SVM的遥感分类方法能够有效解决分类效果破碎、精度不高等问题, 而且在学习速度、自适应能力、可表达性等方面具有优势。

关键词: 森林生态系统, 生态公益林, SVM, 空间特征, 最优超平面

Abstract: This paper deals with the RS image classification based on the SVM method, using space characteristic information for classification of IKONOS high spatial resolution images and monitoring of public w elfare forests.Analy sis was conducted on comparison of this method with tradition method. The resultshow s that the RS image classification based on the SVM method can solve the image classification fragmentation, low accuracy etc, and has advantage in study speed, orientation abili ty and expression, etc.The aim of this paper is to discuss a method to inquire into the classification method of public welfare forests with high spatial resolution RS image and providing theoretical basis and data support for the development of forestry information netw ork and “digi tal forestry”.

Key words: forest ecosystem, ecological service forests, SVM, space characteristic, superior super flat surface

中图分类号: