欢迎访问林草资源研究

林业资源管理 ›› 2015›› Issue (2): 116-124.doi: 10.13466/j.cnki.lyzygl.2015.02.021

• 研究与检讨 • 上一篇    下一篇

基于改进端元提纯模型的MODIS森林类型识别研究

陈利1, 林辉2, 陶冀1   

  1. 1.湖南省林业调查规划设计院,长沙 410007;
    2中南林业科技大学林业遥感信息工程研究中心,湖南 410004
  • 出版日期:2015-04-28 发布日期:2021-01-12
  • 作者简介:陈利(187-),男,湖南衡阳人,硕士,研究方向:林业遥感和地理信息系统。Email:cufcl@126.com

Spectral unmixing of MODIS data based on improved endmember purification model application to forest type identification

CHEN Li1, LIn Huir2, TA0Ji1   

  1. 1. Hun Pri Furs humo amud Pamin Doin haiuiu Chngho 41000, Hmum , China;
    2. Reurh Cemr or Furuy Reme Sensing & Inmormation Enginering, Cenral South Uniesity of Forstry & Tchnology Changha 4100, Hunan, China
  • Online:2015-04-28 Published:2021-01-12

摘要: MODIS遥感数据具有很高的光谱辐射精度,以及成本低、覆盖面积广、获取容易、周期短等数据特征,可以实现全覆盖大尺度区域森林类型信息快速提取,但由于其空间分辨率较低,遥感数据中存在混合像元。利用混合像元分解模型进行分解可得到较好的分类结果,但混合像元分解的端元组分直接影响分类的精度。利用决策树分类模型改进端元提纯,分析各地物的MODIS时间序列植被指数变化规律及物候变化规律,利用决策树模型分类的结果进行端元组分的提纯,最后进行混合像元分解。研究结果表明:分类精度最高的是线性混合像元分解,其次是最大似然分类,最差的是非线性混合像元分解,其中带约束和不带约束的线性分解模型的精度相差不大。

关键词: 遥感, 决策树, 端元提纯, 混合像元, MODIS, 森林

Abstract: Because of high spectral and lempora rsoluionus arge coverage ,and low cosl,MODIS(Moderale Resoution Imaging Serordioionere da has ben widely lused lo quickly extral information of for est types aul regional ,naina and global scales. However is coase spaial resouio ofen leads lo mised pixels and low cssisatio acuracy of forest types. Using seta ummixing can,to some extent,incrase the acurce of casisaio But, how 1lo acurately entract pure endmembers for a study area ofenei an great callnge. The seleion of liner or non-linor sectra unmixing algoritim is anoher callnge. In this study ,a merhod 1 extraet endmembers from MoODIS images was developed. In this mehod the time sries of MODIS derived vegetation index was fist derived and the phenologca variaio of forest trpes were analyed. Decisio treee casificsit ion was then conducled and the obuaine resuls were used lo ex-.trnct endmembers. In adino fo comparson, the casictio was also made using a widely lused clasi fier - maximum ielihoo. Theee impie that liner spetal umming was the best reanlss of wih and without cosrainsns then maximum ikelihoo casicati and nm-liner speral ummixing.

Key words: Remole sensing, Deision tree, Endmember extraction, Mixed pixels, MODIS, Forest

中图分类号: