欢迎访问林草资源研究

林业资源管理 ›› 2016›› Issue (5): 59-64.doi: 10.13466/j.cnki.lyzygl.2016.05.011

• 科学研究 • 上一篇    下一篇

考虑地形因素的像元均方差抛物线拟合高山松丰度研究

蒋胜昌1, 张加龙1,2, 陆驰1,2, 胥辉1, 黄传烯1, 罗云江1   

  1. 1.西南林业大学 林学院,昆明 650224;
    2.西南林业大学 云南高校林业3S技术工程研究中心,昆明 650224
  • 收稿日期:2016-07-20 修回日期:2016-09-08 出版日期:2016-10-28 发布日期:2020-11-02
  • 通讯作者: 张加龙(1981-),男,湖北随州人,副教授,硕导,主要从事林业遥感方面的研究工作。Email:jialongzhang@swfu.edu.cn
  • 作者简介:蒋胜昌(1993-),男,云南曲靖人,在读学士,主要从事林业遥感方面的研究工作。Email:1905262731@qq.com
  • 基金资助:
    云南省教育厅科学研究基金重点项目(2015Z143);西南林业大学林学一级学科中青年后备人才培养计划(5009750101-1);国家林业局林业公益性行业科研专项(201404309)

Pixel Mean Variance Parabola Fitting of Pinus densata Abundance Based on Topographic Factors

JIANG Shengchang1, ZHANG Jialong1,2, LU Chi1,2, XU Hui1, HUANG Chuanxi1, LUO Yunjiang1   

  1. 1. Faculty of Forestry,Southwest Forestry University,Kunming 650224,Yunnan,China;
    2. 3S Technology and Engineering Research Center in Forestry of the Yunnan Universities,Southwest Forestry University,Kunming 650224,Yunnan,China
  • Received:2016-07-20 Revised:2016-09-08 Online:2016-10-28 Published:2020-11-02

摘要: 基于香格里拉地区Landsat 8影像、外业调查和森林资源二类调查数据,采用坡度匹配法对遥感数据进行了地形校正,使用线性波谱分离(LSU)、匹配滤波(MF)、最小能量约束(CEM)、像元均方差抛物线(PMVP)等4种方法,提取了高山松丰度图。分析丰度结果,4个典型样区平均均方根误差值排序为LSU<PMVP<CEM<MF,PMVP能较好地分出高山松边界信息,丰度提取效果较好。使用上述4种不同方法将4个不同的地物混合类型提取的高山松丰度与真实丰度(0.557 7)进行对比,接近程度依次为PMVP,LSU,CEM,MF。利用像元均方差抛物线方法提取高山松丰度精度较高,后期还可以探索更合适的拟合曲线方法,使其能应用到森林树种的丰度提取和林地覆盖分类中。

关键词: 高山松, 混合像元分解, 香格里拉, Landsat 8, 像元均方差抛物线

Abstract: Four typical research sample areas which are boundary mixed were selected based on Landsat8 images.The method of slope matching was used to do topographic corrections.The abundance of the Pinus densat was extracted using the method of linear spectral separation(LSU),matched filtering(MF),the minimum energy constraint(CEM),the pixel mean variance parabola(PMVP).The results of the abundance show that the order of the average root mean square error values of the four typical sample areas is:LSU <PMVP<CEM <MF.The PMVP could better separate Pinus densat boundary with a good result.Using PMVP to extract abundance has achieved higher accuracy.It could also explore more suitable curve fitting methods applied to the extraction of forest tree species abundance and land cover classification in the future.

Key words: Pinus densata, mixed pixel unmixing, Shangri-La, Landsat 8, pixel mean variance parabola fitting

中图分类号: