欢迎访问林草资源研究

林业资源管理 ›› 2017›› Issue (4): 89-96.doi: 10.13466/j.cnki.lyzygl.2017.04.014

• 科学研究 • 上一篇    下一篇

基于遥感影像和二类调查数据的林地类型分类方法对比研究——以广西凭祥市为例

张乃静(), 侯瑞霞, 纪平()   

  1. 中国林业科学研究院资源信息研究所,北京 100091
  • 收稿日期:2017-05-02 修回日期:2017-07-05 出版日期:2017-08-28 发布日期:2020-09-24
  • 通讯作者: 纪平
  • 作者简介:张乃静(1982-),女,天津人,助理研究员,博士,研究方向为数据挖掘、信息系统与信息共享。Email:zhangnaijing@ifrit.ac.cn
  • 基金资助:
    中央级公益性科研院所基本科研业务费专项(CAFYBB2017SZ006);国家国际科技合作专项项目(2014DFG32140)

Study on Classification Methods Based on Remote Sensing Image and Forest Resources Management Survey Data—Take Pingxiang,Guangxi Autonamous Region as an Example

ZHANG Naijing(), HOU Ruixia, JI Ping()   

  1. Research Institute of Forest Resource Information Techniques,Chinese Academy of Forestry,Beijing 100091,China
  • Received:2017-05-02 Revised:2017-07-05 Online:2017-08-28 Published:2020-09-24
  • Contact: JI Ping

摘要:

基于Landsat 8 OLI遥感影像和森林资源二类调查数据,对有林地、灌木林地、未成林地和非林地等林地类型,分别采用最大似然、神经网络、支持向量机和决策树分类方法进行分类,验证分类精度,并对分类效果进行对比评价。结果表明:支持向量机分类方法表现最好,分类精度为78.7%,Kappa系数为0.76;其次为神经网络和决策树分类方法,分类精度分别为76.8%和72.5%,Kappa系数分别为0.72和0.68;最大似然法表现最差,分类精度为44.9%,Kappa系数为0.39。研究结果可为森林资源信息的快速提取提供理论依据。

关键词: 遥感, 二类调查, 分类

Abstract:

Based on Landsat-8 image and forest resources management survey data,different forest land types were classified by maximum likelihood classification (ML),neural net classification (NN),support vector machine classification (SVM) and decision tree classification (DT) methods,and then the precisions (P) of classifications were verified,and the performances of classifications were evaluated correlatively.The results show that the best performance was SVM (P=78.7%,Kappa=0.76),and the followings were NN (P=76.8%,Kappa=0.72) and DT (P=72.5%,Kappa=0.68),and the worst was ML (P=44.9%,Kappa=0.39).These results provide a theory basis for the rapid extraction of forest resources information of forestry science data platform.

Key words: remote sensing, forest resources management survey, classification

中图分类号: