欢迎访问林草资源研究

林业资源管理 ›› 2017›› Issue (4): 110-116.doi: 10.13466/j.cnki.lyzygl.2017.04.017

• 科学研究 • 上一篇    下一篇

基于端元提取的滇中典型森林类型识别研究

黄田(), 张超(), 吉一涛, 余哲修, 罗恒春, 张一   

  1. 西南林业大学,昆明 650224
  • 收稿日期:2017-06-23 修回日期:2017-07-19 出版日期:2017-08-28 发布日期:2020-09-24
  • 通讯作者: 张超
  • 作者简介:黄田(1992-),女,云南腾冲人,在读硕士,主要从事林业遥感研究。Email:331797210@qq.com
  • 基金资助:
    国家自然科学基金项目“基于高光谱耦合建模的干旱遥感反演技术”(31460195);国家自然科学基金项目“典型高原湖滨湿地植被高光谱遥感反演及时空演变过程”(31660236)

Study on Remote Sensing Classification of Typical Forest Types in Central Yunnan Based on Endmember Extraction,ZHANG Yi

HUANG Tian(), ZHANG Chao(), JI Yitao, YU Zhexiu, LUO Hengchun, ZHANG Yi   

  1. Southwest Forestry University,Kunming 650224,China
  • Received:2017-06-23 Revised:2017-07-19 Online:2017-08-28 Published:2020-09-24
  • Contact: ZHANG Chao

摘要:

端元波谱的选择对森林类型的识别精度和效率具有重要影响。以滇中地区典型森林植被为研究对象,基于Landsat8 OLI遥感影像数据,结合二类调查数据,在影像融合的基础上提取典型森林植被的感兴趣区,通过最小噪声分离变换及n维散点图提取滇中典型森林植被(云南松、华山松、蓝桉、柏木和栎类)的波谱曲线,利用提取出的端元波谱,采用波谱角填图法进行滇中典型森林类型的识别,采用混淆矩阵对分类结果进行精度评价;同时,与传统的森林类型分类识别端元提取方法进行了对比分析。研究结果表明:1) 基于感兴趣区端元提取的方法所得的分类结果较为理想,总体分类精度达83.46%,其中云南松84.78%、华山松96.88%、蓝桉80.60%、柏木75.00%、栎类57.69%。2) 基于几何顶点的端元提取方法通过多次端元波谱提取、波谱分析仍仅能识别云南松、华山松、蓝桉和栎类,柏木无法识别;分类精度分别为云南松89.13%、华山松84.37%、蓝桉76.12%、栎类53.13%。基于传统方法提取出的波谱近似程度较高,分类精度偏低,端元波谱不易识别。3) 基于感兴趣区的端元提取方法方便快捷、精度较高,可避免无意义端元波谱对分类结果的混淆,能有效解决端元波谱无法识别的技术难题。

关键词: 端元提取, 光谱角填图, 森林类型, 遥感图像分类, 滇中地区

Abstract:

The accuracy and efficiency of the recognition of forest types are strongly influenced by the choice of endmember spectra.Based on Landsat8 OLI remote sensing image,taking the typical forest vegetation in central Yunnan Province as the object of this study,combined with the forest resource inventory data,the ROIs of typical forest vegetation are extracted firstly on the basis of image fusion,then spectral curves of typical forest vegetation in Central Yunnan Province such as Pinus yunnanensis,Pinus armandii Franch.,Eucalyptus globulus Labill.,Cupressus funebris Endl.and Quercus acutissima are extracted by means of MNF and N-dimensional scattering plots.Based on these endmember spectra,the typical forest types in central Yunnan Province are identified by spectral angle mapping method,and the accuracy of classification is evaluated finally.Meanwhile,the traditional method of endmember extraction for traditional classification of forest types is used to compare with the new method in this study.The results showed as follows:1)The result of classification based on the method of endmember extraction in ROI is better,the overall accuracy was 83.46%,and Pinus yunnanensis 84.78%,Pinus armandii Franch.96.88%,Eucalyptus globulus Labill.80.60%,Cupressus funebris Endl.75.00%,Quercu sacutissima 57.69%.2) Only Pinus yunnanensis,Pinus armandii Franch.,Eucalyptus globulus Labill.and Quercus acutissima can be identified through the method of endmember extraction based on geometric apex,using endmember spectral extraction and spectral analysis many times,but not Cupressus funebris Endl.The identification accuracy was 89.13% for Pinus yunnanensis,84.37% for Pinus armandii Franch.,76.12% for Eucalyptus and 53.13% for Quercus acutissima.It is concluded that the spectra extracted by the traditional method have higher similarity,which has lower classification accuracy,and the endmember spectra is not easy to be recognized.3) The endmember extraction method based on ROI can avoid the confusion of classification results by meaningless endmember spectra for its higher efficiency,which can effectively solve the difficult problem of endmember spectra identification.

Key words: endmember extraction, spectral angle mapping, forest types, remote sensing image classification, central Yunnan

中图分类号: