[1] |
Cao Lin, CoopsNicholas C, Innes John L, et al. Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne LiDAR data[J]. Remote Sensing of Environment, 2016,178:151-171.
|
[2] |
范文义, 张海玉, 于颖, 等. 三种森林生物量估测模型的比较分析[J]. 植物生态学报, 2016,35(4):402-410.
|
[3] |
王海宾, 侯瑞萍, 郑冬梅, 等. 基于地理加权回归模型的亚热带地区乔木林生物量估算[J].农业机械学报, 2018(6):184-190.
|
[4] |
刘茜, 杨乐, 柳钦火, 等. 森林地上生物量遥感反演方法综述[J]. 遥感学报, 2015,19(1):62-74.
|
[5] |
Lu D, Chen Q, Wang G, et al. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems[J]. International Journal of Digital Earth, 2014,9(1):63-105.
doi: 10.1080/17538947.2014.990526
|
[6] |
戚玉娇. 大兴安岭森林地上碳储量遥感估算与分析[D]. 哈尔滨:东北林业大学, 2014.
|
[7] |
Lu, D., Chen Q., Wang, G., et al. Aboveground forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates[J]. International Journal of Forestry Research, 2012,2012(2):1-16.
|
[8] |
杜华强. 竹林生物量碳储量遥感定量估算[M]. 北京: 科学出版社, 2012.
|
[9] |
韩爱惠. 森林生物量及碳储量遥感监测方法研究[D]. 北京:北京林业大学, 2009.
|
[10] |
沈楚楚. 浙江省主要树种(组)生物量转换系数研究[D]. 杭州:浙江农林大学, 2013.
|
[11] |
陶立超. 白马林场森林碳储量遥感估测[D]. 北京:北京林业大学, 2014.
|
[12] |
许等平, 李晖, 智长贵, 等. 基于CEBERS-WFI遥感数据的森林生物量估测方法研究[J].林业资源管理, 2010(3):104-109.
|
[13] |
Sarker L R, Nichol J E. Improved forest biomass estimates using ALOS AVNIR-2 texture indices[J]. Remote Sensing of Environment, 2011,115(4):968-977.
doi: 10.1016/j.rse.2010.11.010
|
[14] |
Nichol J E, Sarker M L R. Improved biomass estimation using the texture parameters of two high-resolution optical sensors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49:930-948.
doi: 10.1109/TGRS.2010.2068574
|
[15] |
王月婷, 张晓丽, 杨慧乔, 等. 基于Landsat 8卫星光谱与纹理信息的森林蓄积量估算[J]. 浙江农林大学学报, 2015,32(3):384-391.
doi: 10.11833/j.issn.2095-0756.2015.03.008
|
[16] |
Eckert S. Improved forest biomass and carbon estimations using texture measures from worldView-2 satellite data[J]. Remote Sensing, 2012,4(4):810-829.
doi: 10.3390/rs4040810
|
[17] |
Meng J H, Li S M, Wang W, et al. Estimation of forest structural diversity using the spectral and textural information derived from SPOT-5 satellite images[J]. Remote Sensing, 2016,8(2):125.
doi: 10.3390/rs8020125
|
[18] |
Sarker L R, Nichol J E. Improved forest biomass estimates using ALOS AVNIR-2 texture indices[J]. Remote Sensing of Environment, 2011,115(4):968-977.
doi: 10.1016/j.rse.2010.11.010
|
[19] |
王惠文, 吴载斌, 孟洁. 偏最小二成回归的线性与非线性方法[M]. 北京: 国防工业出版社, 2006.
|
[20] |
张超, 彭道黎, 涂云燕, 等. 利用TM影像和偏最小二乘回归方法估测三峡库区森林蓄积量[J]. 北京林业大学学报, 2013,35(3):11-17.
|
[21] |
Li X C, Zhang Y J, Bao Y S, et al. Exploring the best hyperspectral Features for LAI estimation using partial least squares regression[J]. Remote Sensing, 2014,6(7):6221-6241.
doi: 10.3390/rs6076221
|
[22] |
Kelsey K C, Neff J C. Estimates of aboveground biomass from texture analysis of Landsat imagery[J]. Remote Sensing, 2014,6(7):6407-6422.
doi: 10.3390/rs6076407
|
[23] |
徐小军, 周国模, 杜华强, 等. 基于Landsat TM数据估算雷竹林地上生物量[J]. 林业科学, 2011,47(9):1-6.
doi: 10.11707/j.1001-7488.20110901
|