欢迎访问林草资源研究

林业资源管理 ›› 2018›› Issue (6): 38-44.doi: 10.13466/j.cnki.lyzygl.2018.06.007

• 科学研究 • 上一篇    下一篇

基于Landsat 8影像的乔木林地上生物量估算

任怡1(), 王海宾2, 许等平2   

  1. 1.国家林业和草原局调查规划设计院,北京 100714
    2.国家林业和草原局林产工业规划设计院,北京 100010
  • 收稿日期:2018-10-10 修回日期:2018-12-17 出版日期:2018-12-28 发布日期:2020-09-27
  • 作者简介:任怡(1981-),女,陕西西安人,工程师,硕士,主要从事森林资源监测及“3S”技术林业应用工作。Email: 5846758@qq.com
  • 基金资助:
    国家林业局948项目(2015-4-32);国家重点林业工程监测技术示范推广项目([2015]02号)

Estimation of Aboveground Biomass of Arbor Forest Based on Landsat 8 Image

REN Yi1(), WANG Haibin2, XU Dengping2   

  1. 1. Academy of Forest and Grassland Inventory and Planning,NFGA,Beijing 100714,China
    2. Planning and Design Institute of Forest Products Industry,NFGA,Beijing 100010,China
  • Received:2018-10-10 Revised:2018-12-17 Online:2018-12-28 Published:2020-09-27

摘要:

以浙江省内的一景Landsat 8影像和96块野外调查数据为数据源,提取出植被指数、纹理特征、地形因子并进行优选,对优选后的变量因子进行分组,生成植被指数、植被指数+纹理特征相结合的2种自变量集,采用偏最小二乘回归法构建乔木林地上生物量估算模型,并对估算结果进行对比分析。结果显示:在构建的模型中,植被指数+纹理特征集构建的模型精度均要优于植被指数集构建的模型,说明多光谱波段的纹理特征具有改善模型估算效果的作用。采用的变量筛选方法较好地考虑了变量间的相关性及共线性问题,可以提高所构建模型的稳定性。

关键词: 乔木林, 生物量模型, 植被指数, 纹理特征, Landsat 8影像

Abstract:

With the Landsat 8 image and 96 field survey data in Zhejiang Province as the data source,the vegetation indices,texture features,terrain factors were extracted and optimized,and the preferred variables were selected.The factors were grouped into two sets of independent variables:vegetation indices,vegetation indices+ texture features.The least squares regression method was used to construct the aboveground biomass estimation model of arbor forest,and the estimation results were compared and analyzed.The results show that in the constructed models,the model accuracy of vegetation indices + texture features set is better than the model constructed by the vegetation indices set.The result indicates that the texture features of the multispectral bands have the effect of improving the model estimation accuracy.In addition,the variable screening method adopted in this paper takes into account the correlation between variables and the collinearity problem,which can improve the stability of the constructed model.

Key words: arbor forest, biomass model, vegetation index, texture feature, Landsat 8 image

中图分类号: