[1] |
Stocker T F, Qin D, Plattner G-K, et al. IPCC,climate change 2013:The physical science basis.Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press; 2013.
|
[2] |
Solomon S, Qin D, Manning M, et al. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change[M]. Cambridge, USA:Cambridge University Press; 2007.
|
[3] |
Reichstein M, Bahn M, Ciais P, et al. Climate extremes and the carbon cycle[J].Nature, 2013,500(7462):287S295.
|
[4] |
姚檀栋, 陈发虎, 崔鹏, 等. 从青藏高原到第三极和泛第三极[J]. 中国科学院院刊, 2017,32(9):924-931.
|
[5] |
Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006,440(7081):165-173.
doi: 10.1038/nature04514
pmid: 16525463
|
[6] |
Frank B, Jinsheng H E, Karsten S, et al. Pedogenesis,permafrost,and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau[J]. Global Change Biology, 2009,15(12):3001-3017.
doi: 10.1111/j.1365-2486.2009.01953.x
|
[7] |
Yu C Q, Shen Z X, Zhang X Z, et al. Response of soil C and N,dissolved organic C and N,and inorganic N to short-term experimental warming in an Alpine meadow on the Tibetan Plateau[J]. The Scientific World Journal, 2014,2014:1-10.
|
[8] |
Reichstein M, Rey A, Freibauer A, et al. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability,temperature and vegetation productivity indices[J]. Global Biogeochemical Cycles, 2003,17(4):1-15.
|
[9] |
Liu W, Zhang Z, Wan S. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland[J]. Global Change Biology, 2009,15(1):184-195.
doi: 10.1111/gcb.2009.15.issue-1
|
[10] |
Lü F M, Lü X T, Liu W, et al. Carbon and nitrogen storage in plant and soil as related to nitrogen and water amendment in a temperate steppe of northern China[J]. Biology and Fertility of Soils, 2010,47(2):187-196.
doi: 10.1007/s00374-010-0522-4
|
[11] |
Zhou X, Chen C, Wang Y, et al. Soil extractable carbon and nitrogen,microbial biomass andmicrobial metabolic activity in response to warming and increased precipitation in a semiarid Inner Mongolian grassland[J]. Geoderma, 2013,206:24-31.
doi: 10.1016/j.geoderma.2013.04.020
|
[12] |
Grundmann G L, Renault P, Rosso L, et al. Differential Effects of Soil Water Content and Temperature on Nitrification and Aeration[J]. Soil Science Society of America Journal, 1995,59:1342-1349.
doi: 10.2136/sssaj1995.03615995005900050021x
|
[13] |
Niboyet A, Le Roux X, Dijkstra P, et al. Testing interactive effects of global environmental changes on soil nitrogen cycling[J]. Ecosphere, 2011,2(5):1-24.
|
[14] |
Zhou X, Chen C, Wang Y, et al. Warming Rather Than Increased Precipitation Increases Soil Recalcitrant Organic Carbon in a Semiarid Grassland after 6 Years of Treatments[J]. PLOS ONE, 2013,8(1):1-7.
|
[15] |
Chen D, Zhao L, Li Q, et al. Response of Soil Carbon and Nitrogento 15-year Experimental Warming in Two Alpine Habitats (Kobresia Meadow and Potentilla Shrubland) on the Qinghai-Tibetan Plateau[J]. Polish Journal of Environmental Studies, 2016,25(6):2305-2313.
doi: 10.15244/pjoes/64325
|
[16] |
Jiang L, Wang S, Luo C, et al. Effects of warming and grazing on dissolved organic nitrogen in a Tibetan alpine meadow ecosystem[J]. Soil and Tillage Research, 2016,158:156-164.
doi: 10.1016/j.still.2015.12.012
|
[17] |
Yang Y H, Luo Y Q, Finzi A C. Carbon and nitrogen dynamics during forest stand development:a global synjournal[J]. New Phytologist, 2011,190(4):977-989.
doi: 10.1111/j.1469-8137.2011.03645.x
pmid: 21323927
|
[18] |
Zhou X Q, Chen C R, Wang Y F, et al. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland[J]. Science of the Total Environment, 2013,444:552-558.
doi: 10.1016/j.scitotenv.2012.12.023
pmid: 23298760
|
[19] |
武丹丹, 井新, 林笠, 等. 青藏高原高寒草甸土壤无机氮对增温和降水改变的响应[J]. 北京大学学报:自然科学版, 2016,52(5):959-966.
|
[20] |
王丽芹, 齐玉春, 董云社, 等. 冻融作用对陆地生态系统氮循环关键过程的影响效应及其机制[J]. 应用生态学报, 2015,26(11):3532-3544.
|
[21] |
张宪洲, 杨永平, 朴世龙, 等. 青藏高原生态变化[J]. 科学通报, 2015,60(32):3048-3056.
|
[22] |
Liu Y W, Xu- Ri, Wang Y S, et al. Wet deposition of atmospheric inorganic nitrogen at five remote sites in the Tibetan Plateau[J]. Atmospheric Chemistry and Physics, 2015,15(20):11683-11700.
doi: 10.5194/acp-15-11683-2015
|
[23] |
Doetterl S, Stevens A, Six J, et al. Soil carbon storage controlled by interactions between geochemistry and climate[J]. Nature Geoscience, 2015,8(10):780-785.
doi: 10.1038/ngeo2516
|
[24] |
Rui Y, Wang S, Xu Z, et al. Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qinghai-Tibet Plateau in China[J]. Journal of Soils & Sediments, 2011,11(6):903-914.
|
[25] |
闫钟清, 齐玉春, 董云社, 等. 草地生态系统氮循环关键过程对全球变化及人类活动的响应与机制[J]. 草业学报, 2014,23(6):279-292.
doi: 10.11686/cyxb20140634
|
[26] |
Wu G L, Ren G H, Dong Q M, et al. Above- and Belowground Response along Degradation Gradient in an Alpine Grassland of the Qinghai-Tibetan Plateau[J]. Acta Hydrochimica Et Hydrobiologica, 2014,42(3):319-323.
|
[27] |
Mu C C, Zhang T J, Zhao Q, et al. Soil organic carbon stabilization by iron in permafrostregions of the Qinghai-Tibet Plateau[J]. Geophysical Research Letters, 2016,43(19):10286-10294.
doi: 10.1002/2016GL070071
|
[28] |
Johnston C A, Groffman P, Breshears D D, et al. Carbon cycling in soil[J]. Frontiers in Ecology & the Environment, 2004,2(10):522-528.
doi: 10.1890/1540-9295(2004)002[0522:CCIS]2.0.CO;2
|
[29] |
Yan L, Chen S, Huang J, et al. Increasing water and nitrogen availability enhanced net ecosystem CO2 assimilation of a temperate semiarid steppe[J]. Plant Soil, 2011,349:227-240.
doi: 10.1007/s11104-011-0864-1
|
[30] |
高文栋, 钟圣赟, 刘伟丰, 等. 吊罗山青皮林土壤硝化—反硝化作用及其影响因素[J].林业资源管理, 2014(5):69-73.
|
[31] |
Li Y L, Tenhunen J, Owen K, et al. Patterns in CO2 gas exchange capacity of grassland ecosystems in the Alps[J]. Agricultural and Forest Meteorology, 2008,148(1):51-68.
doi: 10.1016/j.agrformet.2007.09.002
|
[32] |
Jackson M B, Colmer T D. Response and Adaptation by Plants to Flooding Stress[J]. Annals of Botany, 2005,96(4):501-505.
doi: 10.1093/aob/mci205
pmid: 16217870
|
[33] |
Wang W Y, Wang Q J, Wang C Y, et al. The effect of land management on carbon and nitrogen status in plants and soils of alpine meadows on the Tibetan plateau[J]. Land Degradation & Development, 2005,16(5):405-415.
|
[34] |
Cookson W R, Osman M, Marschner P, et al. Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature[J]. Soil Biology and Biochemistry, 2007,39(3):744-756.
doi: 10.1016/j.soilbio.2006.09.022
|
[35] |
Liu W, Chen S, Zhao Q, et al. Variation and control of soil organic carbon and other nutrients in permafrost regions on central Qinghai-Tibetan Plateau[J]. Environmental Research Letters, 2014,9(11):1-9.
|
[36] |
Luo, Y, Su, B, Currie, W S, et al. Progressive Nitrogen Limitation of Ecosystem Responses to Rising Atmospheric Carbon Dioxide[J]. Bioscience, 2004,54(8):731-739.
|
[37] |
Lin L, Zhu B, Chen C, et al. Precipitation overrides warming in mediating soil nitrogen pools in an alpine grassland ecosystem on the Tibetan Plateau[J]. Scientific Report, 2016,6:1-9.
|
[38] |
Wang S, Duan J, Xu G, et al. Effects of warming and grazing on soil N availability,species composition,and ANPP in an alpine meadow[J]. Ecology, 2012,93:2365-2376.
|
[39] |
Chen H, Zhu Q, Peng C H, et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau[J]. Global Change Biology, 2013,19(10):2940-2955.
doi: 10.1111/gcb.12277
|
[40] |
Kang S, Xu Y, You Q, et al. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental Research Letters, 2010,5(1):1-8.
|
[41] |
Shaw M R, Harte J. Response of nitrogen cycling to simulated climate change_ differential responses along a subalpine ecotone[J]. Global Change Biology, 2010,7(2):193-210.
doi: 10.1046/j.1365-2486.2001.00390.x
|