林业资源管理 ›› 2019›› Issue (2): 137-141.doi: 10.13466/j.cnki.lyzygl.2019.02.020
收稿日期:
2019-01-09
修回日期:
2019-03-22
出版日期:
2019-04-28
发布日期:
2020-09-22
作者简介:
宫殷婷(1984),女,吉林农安人,工程师,硕士,主要从事林业规划、景观生态学等方面的研究工作。Email:
GONG Yinting1(), ZHENG Guilian1, REN Zhengxing2
Received:
2019-01-09
Revised:
2019-03-22
Online:
2019-04-28
Published:
2020-09-22
摘要:
气孔是植物生理过程中的重要器官,对植物叶片气孔行为进行分析对模拟其生理生态过程、水文循环过程具有重要意义。传统理论认为植物在夜间气孔是关闭的,而越来越多的证据表明这种关闭并不是完全关闭,夜间气孔不完全关闭的现象可能广泛存在于植物界。针对以往的理论和研究没有完整地解释夜间气孔张开现象、夜间气孔导度以及其对各环境因子的响应的科学问题,对长期以来国内外关于夜间气候导度理论和模拟方面的研究成果进行综述,包括夜间气孔导度在时间尺度上的变化特征以及驱动夜间气孔行为的因素,并对气孔导度模型进行了分析。研究结果为植物蒸腾过程进行补充,有利于完整地了解植物整个水生理生态过程。今后的研究中,将侧重于时间尺度上的扩展以及相关模型模拟分析研究。
中图分类号:
宫殷婷, 郑桂莲, 任正兴. 植物夜间气孔导度理论与模拟研究[J]. 林业资源管理, 2019,(2): 137-141.
GONG Yinting, ZHENG Guilian, REN Zhengxing. The Theory and Simulation Studies of Stomatal Conductance at Night[J]. FOREST RESOURCES WANAGEMENT, 2019,(2): 137-141.
[1] | 袁国富, 庄伟, 罗毅. 冬小麦叶片气孔导度模型水分响应函数的参数化[J]. 植物生态学报, 2012,36(5):463-470. |
[2] | 孙谷畴, 赵平, 曾小平, 等. 亚热带森林演替树种叶片气孔导度对环境水分的水力响应[J]. 生态学报, 2009,29(2):698-705. |
[3] | 赵平, 刘惠, 孙谷畴. 4种植物气孔对水汽压亏缺敏感度的种间差异[J]. 中山大学学报:自然科学版, 2007,46(4):63-68. |
[4] | Gao Qiong, Zhao Ping, Zeng Xiaoping,et al.A model of stomatal conductance to quantify the relationship between leaf transpiration,microclimate and soil water stress[J]. Plant,Cell and Environment, 2002,25:1373-1381. |
[5] | 高冠龙, 张小由, 常宗强, 等. 植物气孔导度的环境响应模拟及其尺度扩展[J]. 生态学报, 2016,36(6):1-10. |
[6] | 司建华, 冯起, 鱼腾飞, 等. 植物夜间蒸腾及其生态水文效应研究进展[J]. 水科学进展, 2014,25(6):907-914. |
[7] |
Fishier J B, Baldocchi D D, Misson L. What the towers don’t see at night:Nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California[J]. Tree Physiology, 2007,27:597-610.
doi: 10.1093/treephys/27.4.597 pmid: 17242001 |
[8] |
Snyder K A, Richards J H, Donovan L A. Night-time conductance in C3 and C4 species:Do plants lose water at night[J]? Journal of Experimental Botany, 2003,54:861-865.
pmid: 12554729 |
[9] |
Dawson T E, Burges S S O, Tu K P,et al.Nighttime transpiration in woody plants from contrasting ecosystems[J]. Tree Physiology, 2007,27:561-575.
doi: 10.1093/treephys/27.4.561 pmid: 17241998 |
[10] |
Bucci S J, Scholz F G, Goldstein G, et al. Processes preventing nocturnal equilibration between leaf and soil water potential in tropical savanna woody species[J]. Tree Physiology, 2004,24:1119-1127.
pmid: 15294758 |
[11] | Baldocchi D. A comparative study of mass and energy exchange rates over a closed C3 (wheat) and an open C4 (corn) crop:II.CO2 exchange and water use efficiency[J]. Agricultural & Forest Meteorology, 1994,67(3-4):291-321. |
[12] |
Caird M A, Richards J H, Donovan L A. Nighttime stomatal conductance and transpiration in C3 and C4 plants[J]. Plant Physiology, 2007,143:4-10.
doi: 10.1104/pp.106.092940 pmid: 17210908 |
[13] | Novick K A, Oren R, Stoy P C, et al. Nocturnal evapotranspiration in eddy-covariance records from three co-located ecosystems in the Southeastern US:implications for annual fluxes[J]. Agricultural and Forest Meteorology, 2009,149:1491-1504. |
[14] |
Philips N G, Ryan M G, Bond B J, et al. Reliance on stored water increases with tree size in three species in the Pacific Northwest[J]. Tree Physiology, 2003,23:237-245.
pmid: 12566259 |
[15] | Loftfield J V G. The behavior of stomata[M]. Carnegie Institution of Washington, 1921. |
[16] | Donovan L A, Richiards J H, Linton M J. Magnitude and mechanisms of disequilibrium between predawn plant and soil water potentials[J]. Ecology, 2003,84:463-470. |
[17] |
Ludwig F, Jewitt R A, Donovan L A. Nutrient and water addition effects on day-and night-time conductance and transpiration in a C3 desert annual[J]. Oecologia, 2006,148:219-225.
pmid: 16456684 |
[18] | Bucci S J, Goldstein G, Meinzer F C, et al. Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in neotropical savanna trees[J]. Trees Structure and Function, 2005,19:296-304. |
[19] |
Domec J C, Scholz F G, Bucci S J, et al. Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species:impact on stomatal control of plant water status[J]. Plant Cell Environ, 2006,29:26-35.
doi: 10.1111/j.1365-3040.2005.01397.x pmid: 17086750 |
[20] |
Scholz F G, Bucci S J, Goldstein G, et al. Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees[J]. Tree Physiology, 2007,27(4):551-9.
doi: 10.1093/treephys/27.4.551 pmid: 17241997 |
[21] |
Barbour M M, Buckley T N. The stomatal response to evaporative demand persists at night in Ricinuscommunis plants with high nocturnal conductance[J]. Plant,Cell and Environment, 2007,30:711-721.
doi: 10.1111/j.1365-3040.2007.01658.x pmid: 17470147 |
[22] |
Daley M J, Phillips N G. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest[J]. Tree Physiol, 2006,26:411-419.
doi: 10.1093/treephys/26.4.411 pmid: 16414920 |
[23] |
Kavanagh K L, Pangle R, Schotzko A D. Nocturnal transpiration causing disequilibrium between soil and stem predawn water potential in mixed conifer forests of Idaho[J]. Tree Physiology, 2007,27(4):621-629.
doi: 10.1093/treephys/27.4.621 pmid: 17242003 |
[24] | Donovan L A, Richiards J H, Linton M J. Magnitude and mechanisms of disequilibrium between predawn plant and soil water potentials[J]. Ecology, 2003,84:463-470. |
[25] |
Dodd A N, Salathia N, Hall A, et al. Plant circadian clocks increase photosynjournal,growth,survival,and competitive advantage[J]. Science, 2005,309:630-633.
doi: 10.1126/science.1115581 pmid: 16040710 |
[26] |
Howard A R, Donovan L A. Helianthus nighttime conductance and transpiration respond to soil water but not nutrient availability[J]. Plant Physiol, 2007,143:145-155.
doi: 10.1104/pp.106.089383 pmid: 17142487 |
[27] | Lasceve G, Leymarie J, Vavasseur A. Alterations in light-induced stomatal opening in a starch-deficient mutant of Arabidopsis thaliana L.deficient in chloroplast phosphoglucomutase activity. Plant Cell Environ, 1997,20:350-358. |
[28] |
Drake P L, Froend R H, Franks P J. Smaller,faster stomata:scaling of stomatal size,rate of response,and stomatalconductance[J]. Journal of Experimental Botany, 2013,64(2):495-505.
doi: 10.1093/jxb/ers347 pmid: 23264516 |
[29] |
Franks P J, Farquhar G D. The mechanical diversity of stomata and its significance in gas-exchange control[J]. Plant Physiology, 2007,143:78-87.
doi: 10.1104/pp.106.089367 pmid: 17114276 |
[30] |
Barbour M M, Cernusak L A, Whitehead D, et al. Nocturnal stomatal conductance and implications for modeling δ18Oof leaf-respired CO2 in temperate tree species[J]. Functional Plant Biology, 2005,32:1107-1121.
doi: 10.1071/FP05118 pmid: 32689205 |
[31] |
Marks C O, Lechowicz M J. The ecological and functional correlates of nocturnal transpiration[J]. Tree Physiology, 2007,27:577-584.
pmid: 17241999 |
[32] |
Grulke N E, Alonso R, Nguyen T, et al. Stomata open at night in pole-sized and mature ponderosa pine:implications for O3 exposure metrics[J]. Tree Physiol, 2004,24:1001-1010.
doi: 10.1093/treephys/24.9.1001 pmid: 15234897 |
[33] |
Zeppel M, Lewis J, Chaszar B, et al. Nocturnal stomatal conductance responses to rising CO2,temperature and drought[J]. New Phytologist, 2012,193:929-938.
doi: 10.1111/j.1469-8137.2011.03993.x pmid: 22150067 |
[34] |
Zeppel M J B, Lewis J D, Medlyn B E, et al. Interactive effects of elevatedCO2and drought on nocturnal water fluxes in Eucalyptus saligna[J]. Tree Physiology, 2011,31:932-944.
doi: 10.1093/treephys/tpr024 pmid: 21616926 |
[35] |
Oren R, Sperry J S, Ewers B E, et al. Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in flooded Taxodiumdistichum L.forest:hydraulic and nonhydraulic effects[J]. Oecologia, 2001,126:21-29.
doi: 10.1007/s004420000497 pmid: 28547434 |
[36] | Iritz Z, Lindroth A. Nighttime evaporation from a shortrotation willow stand[J]. J Hydrol, 1994,157:235-245. |
[37] |
Benyon R. Nighttime water use in an irrigated Eucalyptus grandis plantation[J]. Tree Physiology, 1999,19:853-859.
doi: 10.1093/treephys/19.13.853 pmid: 10562402 |
[38] | Ludwig F, Jewitt R A, Donovan L A. Nutrient and water addition effects on day- and night-time conductance and transpiration in a C3 desert annual. Oecologia, 2006,148:219-225. |
[39] | Jarvis P G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field[J]. Philosophical Transactions of the Royal Society of London.Series B, 1976,273:593-610. |
[40] | Ball J T, Woodrow I E, Berry J A. A model predicting stomatal conductance and its contribution to the control of photosynconfproc under different environmental conditions [C]//Progress in Photosynconfproc Research.Dordrecht,Netherlands:MartinusNijhoff Publishers, 1987: 221-224. |
[41] | White D A, Beadle C, Sands P J, et al. Quantifying the effect of cumulative water stress on stomatal conductance of Eucalyptus globulus and Eucalyptus nitens:a phenomenological approach[J]. Australian Journal of Plant Physiology, 1999,26:17-27. |
[42] | Noe S M, Giersch C. A simple dynamic model of photosynjournal in oak leaves:coupling leaf conductance and photosynthetic carbon fixation by a variable intracellular CO2 pool[J]. Functional Plant Biology, 2004,31:1196-1204. |
[43] | 叶子飘, 于强. 植物气孔导度的机理模型[J]. 植物生态学报, 2009,33(4):772-782. |
[44] | Leuning R. A critical appraisal of a combined stomatal-photosynjournal model forC3plants[J]. Plant,Cell & Environment, 1995,18:339-355. |
[45] | 周莉, 周广胜, 贾庆宇, 等. 2006. 盘锦湿地芦苇叶片气孔导度的模拟[J]. 气象与环境学报, 22(4):42-46. |
[1] | 吴莎, 边更战, 易烜, 吕勇. 青冈栎次生林林分形高模型构建[J]. 林草资源研究, 2024, 0(1): 134-142. |
[2] | 王贵林, 谭伟, 陈波涛. 基于深度神经网络的杉木树高-胸径模型研建[J]. 林草资源研究, 2024, 0(1): 82-87. |
[3] | 刘艳, 牛香, 王兵. 罗霄山区近25年生境质量时空演变及预测[J]. 林草资源研究, 2023, 0(6): 39-51. |
[4] | 圆圆, 盛艳, 刘林甫, 王硕, 李娟, 安丽. 窟野河流域生境质量时空演变特征及其影响机制研究[J]. 林草资源研究, 2023, 0(6): 67-74. |
[5] | 史哲瑜, 李自豪. 穿透雨减少对辽西北沙地樟子松树干液流的影响[J]. 林草资源研究, 2023, 0(6): 137-145. |
[6] | 任晓琦, 侯鹏, 陈妍. 森林地上生物量遥感反演研究进展[J]. 林草资源研究, 2023, 0(6): 146-158. |
[7] | 孟先进, 林寿明, 秦琳, 黄宁辉, 丁胜, 薛亚东, 罗勇, 杨廷栋. 绿美广东生态建设示范区数字孪生应用研究[J]. 林草资源研究, 2023, 0(5): 113-121. |
[8] | 吴庭天, 陈毅青, 陈宗铸, 雷金睿, 陈小花, 李苑菱. 海南热带雨林代表性种群空间分布特征研究[J]. 林草资源研究, 2023, 0(5): 133-141. |
[9] | 白星雯, 胡晟, 布日古德, 阳帆. 一类调查与二类调查森林蓄积量数据对接方案分析研究[J]. 林草资源研究, 2023, 0(5): 142-147. |
[10] | 巨文珍, 韦龙斌, 彭泊林, 李常诚, 潘婷. 广西林火驱动因子及预测模型研究[J]. 林草资源研究, 2023, 0(5): 56-62. |
[11] | 何彬元, 曾嵘, 戴蒲英, 潘丹, 方园园, 韦立权. 广西森林城市高质量发展评价及影响因素研究[J]. 林草资源研究, 2023, 0(5): 89-97. |
[12] | 曾浩威, 凌成星, 张军, 刘华, 赵峰, 金跃, 刘曙光, 张雨桐. 基于融合MaxEnt和HSI模型的驼鹿生境适宜性评价[J]. 林业资源管理, 2023, 0(4): 115-122. |
[13] | 邹为民, 陈超, 黄蕾, 宋美萱, 李雪建, 杜华强. 地理加权回归模型结合卫星遥感的松阳县森林地上碳储量估算[J]. 林业资源管理, 2023, 0(4): 132-140. |
[14] | 杜志, 陈振雄, 李锐, 罗崇彬, 杨国锦, 曾伟生. 引入林分优势高和气候因子的杉木和桉树树高-胸径模型研建[J]. 林业资源管理, 2023, 0(4): 36-42. |
[15] | 王文俊, 李莲芳, 李小军, 侯海雄, 刘娴, 张合瑶, 顾梦, 周冬梅. 不同造林密度的21 a生西南桦人工林生长规律研究[J]. 林业资源管理, 2023, 0(4): 53-61. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 212
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 552
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||