欢迎访问林草资源研究

林业资源管理 ›› 2019›› Issue (5): 52-60.doi: 10.13466/j.cnki.lyzygl.2019.05.010

• 科学研究 • 上一篇    下一篇

基于GEE平台广西桉树快速提取研究

卢献健(), 黄俞惠, 晏红波(), 周吕, 吴宸龙, 周斌, 罗乐   

  1. 桂林理工大学 测绘地理信息学院,广西 桂林 541006
  • 收稿日期:2019-07-06 修回日期:2019-09-20 出版日期:2019-10-28 发布日期:2020-09-18
  • 通讯作者: 晏红波
  • 作者简介:卢献健(1982-),男,广西南宁人,副教授,主要从事3S技术的应用研究工作。Email: 2008056@glut.edu.cn
  • 基金资助:
    国家自然科学基金(45461089);广西空间信息与测绘重点实验室课题(163802516)

Study on Rapid Extraction of Eucalyptus Vegetation Information in Guangxi Based on GEE

LU Xianjian(), HUANG Yuhui, YAN Hongbo(), ZHOU Lv, WU Chenlong, ZHOU Bin, LUO Le   

  1. College of Geomatics and Geoinformation,Guilin University of Technology,Guilin 541006,China
  • Received:2019-07-06 Revised:2019-09-20 Online:2019-10-28 Published:2020-09-18
  • Contact: YAN Hongbo

摘要:

为进一步提高基于遥感影像森林(人工林)植被信息提取的工作效率,基于Google Earth Engine(GEE)平台,以Landsat8 OIL影像为实验数据,利用监督分类、支持向量机、最大熵模型、随机森林以及根据试验区实际构建的决策树分类方法对试验区桉树人工林种植面积进行提取,并对各方法进行了比较,在此基础上利用决策树法提取了广西地区桉树种植面积,并利用无人机影像与Google Earth Pro历史影像对实验结果进行了验证。实验过程及结果表明:利用GEE平台可以高效快速地提取遥感植被信息。在以上5种方法中,决策树分类方法取得最好的效果,其试验区桉树提取总体精度与Kappa系数分别达到0.82,0.85;同时,利用决策树提取的广西桉树种植面积与统计资料的面积统计结果具有较好的一致性。说明构建的决策树分类方法对大区域、复杂山区植被覆盖信息的快速提取具有参考意义。

关键词: Google Earth Engine, 广西, 复杂山区, 植被指数, 决策树, 遥感信息提取

Abstract:

In order to further improve the efficiency of forest(plantation) vegetation extraction based on remote sensing image,this paper takes Landsat8 OIL as experimental data on the Google Earth Engine(GEE) platform,and uses supervised classification,support vector machine,maximum entropy model,random forest and decision tree classification based on the actual construction of the experimental area.Line extraction and comparison of various methods are made.On this basis,the area of Eucalyptus in Guangxi was extracted by decision tree,and the experimental results were validated by Unmanned aerial vehicle image and Google Earth Pro historical image.The experimental process and results show that remote sensing vegetation information can be extracted efficiently and quickly by using GEE.Among the five methods in this paper,the decision tree classification method achieves the best results.The overall accuracy and Kappa coefficients of Eucalyptus extraction in the experimental area are 0.82 and 0.85,respectively.At the same time,the area of Eucalyptus extracted by decision tree in Guangxi is in good agreement with the statistical data,which shows that the decision tree classification method constructed in this paper has a good consistency with the results of large area.Rapid extraction of vegetation cover information in complex mountainous areas is of reference significance.

Key words: Google Earth Engine, Guangxi, complex terrain, vegetation index, decision tree, remote sensing information extraction

中图分类号: