欢迎访问林草资源研究

林业资源管理 ›› 2020›› Issue (6): 135-142.doi: 10.13466/j.cnki.lyzygl.2020.06.022

• 技术应用 • 上一篇    下一篇

基于Landsat-8 OLI数据的马尾松林蓄积量饱和点确定及估测

孙忠秋1(), 吴发云1(), 胡杨2, 高显连1, 高金萍1   

  1. 1.国家林业和草原局调查规划设计院,北京 100714
    2.宁夏大学,银川 750021
  • 收稿日期:2020-09-24 修回日期:2020-11-06 出版日期:2020-12-28 发布日期:2021-01-26
  • 通讯作者: 吴发云
  • 作者简介:孙忠秋(1987-),女,黑龙江哈尔滨人,工程师,主要从事林业信息技术及卫星遥感林业应用方面的工作。Email: qiuqiu8708@163.com
  • 基金资助:
    国家或区域尺度森林生物量反演技术引进(KJZXYZ2018004);2020年行业管理专项业务项目“陆地碳卫星-超光谱数据处理和产品生产”(2020-21-93**)

Determination and Estimation of Pinus massoniana Stand Volume and Saturation Point Based on Landsat-8 OLI Data

SUN Zhongqiu1(), WU Fayun1(), HU Yang2, GAO Xianlian1, Gao Jingping1   

  1. 1. Academy of Inventory and Planning,National Forestry and Grassland Administration,Beijing,100714,China
    2. Ningxia University,Yinchuan 750021,China
  • Received:2020-09-24 Revised:2020-11-06 Online:2020-12-28 Published:2021-01-26
  • Contact: WU Fayun

摘要:

以湖南省72块马尾松林样地(25 m×25 m)为研究对象,基于地统计学半方差函数的球状模型估测森林生物量饱和点的方法,利用Landsat-8 OLI数据估测湖南省马尾松林蓄积量的最大饱和点,依据该饱和点估测方法,提出一种新的蓄积量估测模型,将其与多元逐步回归模型进行对比分析。结果表明:基于波段信息,球状模型和二项式模型的最大饱和点估测结果分别为217.05,206.86 m3/hm2;基于植被指数信息,2种方案的最大饱和点估测结果分别为196.95,183.06 m3/hm2;基于新提出的二项式模型的蓄积量建模估测验证结果和多元逐步回归模型的建模估测验证结果的R2分别为0.49和0.29,MAE分别为53.76,63.35 m3/hm2,RMSE分别为58.71,69.53 m3/hm2。与球状模型相比,二项式模型的蓄积量饱和点估测方法更科学合理,是一种确定蓄积量遥感估测饱和点简便方法。与多元逐步回归模型相比,所提出的二项式模型估测森林蓄积量的方法效果更好。

关键词: 遥感影像, 森林蓄积量, 饱和点, 二项式估测模型, 马尾松

Abstract:

This paper takes 72 Pinus massoniana forest plots (25 m × 25 m) in Hunan Province as the research object based on the method of estimating the forest biomass saturation point proposed in previous studies (Scheme 1) and propose a simpler binomial saturation point estimation method (Scheme 2).According to the saturation point estimation method,the study proposes a new stock volume estimation model for a comparative analysis with multiple stepwise regressions.It finds that the maximum saturation point estimation results of Scheme 1 and Scheme 2 were 217.05 m3/hm2 and 206.86 m3/hm2,respectively.Based on the vegetation index information,the maximum saturation point estimation results of Scheme 1 and Scheme 2 were 196.95 m3/hm2 and 183.06 m3/hm2,respectively.In the modeling test phase,based on the newly-proposed binomial model and the multiple stepwise regression mode,R2 was 0.49 and 0.29,MAE was 53.76 m3/hm2 and 63.35 m3/hm2,and RMSE was 58.71 m3/hm2 and 69.53 m3/hm2,respectively.Compared with Scheme 1,the method for estimating the saturation point of forest stock volume (FSV) in Scheme 2 was more scientific and reasonable,and it was a simple method for determining the saturation point of the FSV by remote sensing data.In addition,compared with the multiple stepwise regression model,the binomial model proposed in this study had a better effect in estimating FSV.

Key words: remote sensing image, forest stock volume, saturation point, binomial estimation model, Pinus massoniana

中图分类号: