[1] |
汪康宁, 马婷, 吕杰. 基于随机森林算法的凉水自然保护区蓄积量反演研究[J]. 西南林业大学学报, 2016,36(5):125-129.
|
[2] |
Xie Haiyi, Cao Chunxiang, Xu Shicai, et al. Regional forest volume estimation by expanding LiDAR samples using multi-sensor satellite data[J]. Remote Sensing, 2020,12(3):360-378.
doi: 10.3390/rs12030360
|
[3] |
李文娟, 赵传燕, 别强, 等. 基于机载激光雷达数据的森林结构参数反演[J]. 遥感技术与应用, 2015,30(5):917-924.
doi: 10.11873/j.issn.1004-0323.2015.5.0917
|
[4] |
许子乾, 曹林, 阮宏华, 等. 集成高分辨率UAV影像与激光雷达点云的亚热带森林林分特征反演[J]. 植物生态学报, 2015(7):694-703.
doi: 10.17521/cjpe.2015.0066
|
[5] |
Paolo M, Vibrans A C, Mcroberts R E, et al. Methods for variable selection in LiDAR-assisted forest inventories[J]. Forestry, 2017,7(1):112-124.
|
[6] |
Strimbu V F, Ene L T, Gobakken T, et al. Post-stratified change estimation for large-area forest biomass using repeated ALS strip sampling[J]. Canadian Journal of Forest Research, 2017,47(6):839-847.
doi: 10.1139/cjfr-2017-0031
|
[7] |
Lu Dengsheng, Chen Qi, Wang Guangxing, et al. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems[J]. International Journal of Digital Earth, 2014: 63-105.
|
[8] |
Ayrey E, Hayes D J, Fraver S, et al. Ecologically-based metrics for assessing structure in developing area-based,enhanced forest inventories from LiDAR[J]. Canadian Journal of Remote Sensing, 2019,45(1):88-112.
doi: 10.1080/07038992.2019.1612738
|
[9] |
White Joanne C, Coops, et al. Remote sensing technologies for enhancing forest inventories:a review[J]. Canadian Journal of Remote Sensing, 2016,42(5):619-641.
doi: 10.1080/07038992.2016.1207484
|
[10] |
David Coomes, Michele Dalponte, Tommaso Jucker, et al. Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data[J]. RemoteSensing of Environment, 2017,194:77-88.
|
[11] |
Leite R V, Amaral C H, Pires, et al. Estimatingstem volume in eucalyptus plantations using airborne LiDAR:acomparison of area- and individual tree-based approaches[J]. Remote Sensing. 2020,12:1513.
doi: 10.3390/rs12091513
|
[12] |
王忠诚, 朱光玉, 文仕知, 等. 利用哑变量研究湘西桤木林分优势平均高与平均高的相关关系[J]. 中国农学通报, 2011,27(25):37-44.
|
[13] |
曾伟生, 唐守正, 夏忠胜, 等. 利用线性混合模型和哑变量模型方法建立贵州省通用性生物量方程[J]. 林业科学研究, 2011,24(3):285-291.
|
[14] |
王金池, 邓华锋, 冉啟香, 等. 基于哑变量的云南松蓄积生长模型[J]. 森林与环境学报, 2017,37(4):453-458.
|
[15] |
岳振兴, 岳彩荣, 邹会敏. 哑变量在森林积量模型估测中的应用[J]. 中南林业科技大学学报, 2020,40(7):65-72.
|
[16] |
朱光玉, 胡松, 符利勇. 基于哑变量的湖南栎类天然林林分断面积生长模型[J]. 南京林业大学学报:自然科学版, 2018,42(2):155-162.
|
[17] |
Li Chao, Li Mingyang, Li Yingchang, et al. Estimating aboveground forest carbon density using Landsat 8 and field-based data:a comparison of modeling approaches[J]. International Journal of Remote Sensing, 2020,41(11):4269-4292.
doi: 10.1080/01431161.2020.1714782
|
[18] |
赖旭东. 机载激光雷达基础原理与应用[M]. 北京: 电子工业出版社, 2010: 150.
|
[19] |
Breiman L. Randomforests[J]. Machine learning, 2001,45(1):5-32.
doi: 10.1023/A:1010933404324
|
[20] |
李丽霞, 郜艳晖, 张瑛. 哑变量在统计分析中的应用[J]. 数理医药学杂志, 2006(1):51-53.
|
[21] |
赵勋, 岳彩荣, 李春干, 等. 基于机载LiDAR数据估测林分平均高[J]. 林业科学研究, 2020,33(4):59-66.
|
[22] |
尚珂. 基于支持向量机回归的草地地上生物量遥感估测研究[D]. 昆明:西南林业大学, 2015.
|
[23] |
王珊, 燕飞. SVR的树木生长过程建模及其参数优化研究[J]. 湖南农业科学, 2010(3):103-106.
|