欢迎访问林草资源研究

林业资源管理 ›› 2021›› Issue (1): 77-85.doi: 10.13466/j.cnki.lyzygl.2021.01.011

• 科学研究 • 上一篇    下一篇

基于ALS数据和哑变量技术森林蓄积量估测

金京1(), 岳彩荣1(), 李春干2, 谷雷1, 罗洪斌1, 朱泊东1   

  1. 1.西南林业大学 林学院,昆明 650224
    2.广西大学 林学院,南宁 530004
  • 收稿日期:2020-11-13 修回日期:2020-12-30 出版日期:2021-02-28 发布日期:2021-03-30
  • 通讯作者: 岳彩荣
  • 作者简介:金京(1995-),男,在读硕士,研究方向:资源环境遥感。Email: 1978541807@qq.com
  • 基金资助:
    国家自然基金项目(42061072);亚太森林网络(APFNET/2018P1-CAF)

Estimation on Forest Volume Based on ALS Data and Dummy Variable Technology

JIN Jing1(), YUE Cairong1(), LI Chungan2, GU Lei1, LUO Hongbin1, ZHU Bodong1   

  1. 1. College of Forestry,Southwest Forestry University,Kunming,Yunnan 650224,China
    2. College of Forestry,Guangxi University,Nanning 530004,China
  • Received:2020-11-13 Revised:2020-12-30 Online:2021-02-28 Published:2021-03-30
  • Contact: YUE Cairong

摘要:

基于机载LiDAR数据,分析哑变量对林分蓄积量估测精度的影响。以广西高峰林场为研究对象,借助机载激光雷达点云数据和96个样地数据,将样地数据按7∶3的比例随机划分为建模样本和测试样本,采用随机森林模型(RFR)和支持向量机模型(SVR)对建模样本与对应的点云特征回归建模,将树种组(针叶林和阔叶林)和龄组分别作为哑变量引入到回归模型。利用测试样本的估测精度评价模型的估测精度,引入树种组哑变量,随机森林模型决定系数R2从0.59提高到0.64,支持向量机模型决定系数R2从0.49提高到0.50。引入龄组哑变量,随机森林模型决定系数R2从0.59提高到0.65,支持向量机模型决定系数R2从0.45提高到0.55。根据模型的建模精度和验证精度结果得出,引入哑变量对蓄积量估测模型的精度提升是相对有效的。龄组哑变量对模型精度提升效果优于树种组哑变量。

关键词: ALS, 哑变量, 蓄积量, RFR, SVR

Abstract:

Based on the airborne LiDAR data,the influence of dummy variables on the estimation accuracy of stand volume is analyzed.In this study,Guangxi Gaofeng Forest Farm is taken as the research object,and based on the airborne lidar point cloud data and 96 plot data,the plot data is randomly divided into training samples and test samples are at a ratio of 7∶3.The samples and the corresponding point cloud features are estimated by regression modeling through the use of random forest model(RFR) and support vector machine model(SVR),and the tree species group(coniferous forest and broad-leaved forest) and age group as dummy variables are introduced into the regression model.The study uses the estimation accuracy of the test samples to evaluate the estimation accuracy of the model,and introduces tree species group as dummy variables.The RFR determination coefficient R2 increases from 0.59 to 0.64,and the SVR determination coefficient R 2 increases from 0.49 to 0.50.With the introduction of dummy variables in the age group,the RFR determination coefficient R 2 increases from 0.59 to 0.65 and the SVR determination coefficient R 2 increases from 0.45 to 0.55.According to the modeling accuracy and verification accuracy results of the model,the introduction of dummy variables is relatively effective in improving the accuracy of the accumulation estimation model.The dummy variables of age group have better effect on model accuracy improvement than dummy variables of tree species group.

Key words: ALS, dummy variables, volume, RFR, SVR

中图分类号: