欢迎访问林草资源研究

林业资源管理 ›› 2021›› Issue (1): 173-179.doi: 10.13466/j.cnki.lyzygl.2021.01.022

• 技术应用 • 上一篇    下一篇

基于改进的Faster R-CNN模型的树冠提取研究

黄彦晓1,2(), 方陆明1,3, 黄思琪4, 高海力5, 杨来邦1, 楼雄伟1,2()   

  1. 1.浙江农林大学 信息工程学院,杭州 311300
    2.林业感知技术与智能装备国家林业和草原局重点实验,杭州 311300
    3.浙江省林业智能监测与信息技术研究重点实验室,杭州 311300
    4.浙江农林大学 暨阳学院,浙江 诸暨 311800
    5.浙江农林大学 林业与生物技术学院,杭州 311300
  • 收稿日期:2020-10-07 修回日期:2020-12-18 出版日期:2021-02-28 发布日期:2021-03-30
  • 通讯作者: 楼雄伟
  • 作者简介:黄彦晓(1996- ),女,浙江宁波人,在读硕士,主要从事农业工程与信息技术研究。Email: 2667513147@qq.com
  • 基金资助:
    浙江省科技重点研发计划资助项目(2018C02013)

Research on Crown Extraction Based on Improved Faster R-CNN Model

HUANG Yanxiao1,2(), FANG Luming1,3, HUANG Siqi4, GAO Haili5, YANG Laibang1, LOU Xiongwei1,2()   

  1. 1. School of Information Engineering,Zhejiang A & F University,Hangzhou Zhejiang 311300,China
    2. Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment,Hangzhou Zhejiang 311300,China
    3. Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province,Hangzhou Zhejiang 311300,China
    4. Jiyang College of Zhejiang A & F University,Zhuji Zhejiang 311800,China
    5. College of Forestry and Biotechnology,Zhejiang A & F University,Hangzhou Zhejiang 311300,China
  • Received:2020-10-07 Revised:2020-12-18 Online:2021-02-28 Published:2021-03-30
  • Contact: LOU Xiongwei

摘要:

树冠信息是森林资源调查中的重要内容。传统的树冠冠幅测量方法为实地调查,该方法测量结果在特定的地形和森林环境中误差较大,且人力消耗大、操作繁琐、耗时长。无人机影像技术和深度学习的发展为树冠测量提供了新的方法和实现思路。利用无人机获取了临安东部青山湖绿道两块纯水杉林样地的正射影像图,通过改进目前先进的目标检测方法 Faster R-CNN进行树冠的识别和冠幅的提取。基于改进的Faster R-CNN模型准确率和决定系数达到了92.92%和0.84,分别比改进前的模型提高了5.31%和0.12。这说明了无人机和目标检测技术识别树冠的可行性,这一方法和传统的调查方法相比,具有高效、便捷和低成本的优势。

关键词: 无人机影像, 树冠识别, 冠幅测量, 目标检测, Faster R-CNN

Abstract:

Canopy information is an important part of forest resources investigation.The traditional method of crown width measurement is through field survey,which may result in a significant error in the specific terrain and forest environment,along with great labor force,cumbersome and time-consuming operation procedure.The development of UAV imaging technology and machine learning provides a new method and realization idea for crown measurement.This paper employed UAV to obtain the orthophoto images of two pure Metasequoia glyptostroboides in the greenway of Qingshanhu in the east of Lin'an District.An advanced object detection method,Faster R-CNN,was improved to recognize the tree crown and extract the crown width.The Accuracy and R 2 of the improved Faster R-CNN model are 92.92% and 0.84 respectively,which are 5.31% and 0.12 higher than those of the original model.This shows that the UAV and object detection technology are feasible to identify the tree crown.Compared with the traditional survey method,it has the advantages of high efficiency,convenience and low cost.

Key words: UAV images, crown recognition, crown width measurement, object detection, Faster R-CNN

中图分类号: