欢迎访问林草资源研究

林业资源管理 ›› 2021›› Issue (5): 62-69.doi: 10.13466/j.cnki.lyzygl.2021.05.009

• 科学研究 • 上一篇    下一篇

机载LiDAR数据的林分胸高断面积反演研究

龙飞1(), 岳彩荣1(), 金京1, 李春干2, 罗洪斌1, 徐婉婷1   

  1. 1.西南林业大学 林学院,昆明 650224
    2.广西大学林学院,南宁 530004
  • 收稿日期:2021-08-18 修回日期:2021-09-29 出版日期:2021-10-28 发布日期:2021-11-29
  • 通讯作者: 岳彩荣
  • 作者简介:龙飞(1996-),男,云南宣威人,在读硕士,主要从事林业遥感研究。Email: 1591035716@qq.com
  • 基金资助:
    云南省教育厅科学研究基金项目(2021Y245);云南省科技厅重大科技专项(202002AA00007-015)

Study on the Inversion of Basal Area from Airborne LiDAR Data

LONG Fei1(), YUE Cairong1(), JIN Jing1, LI Chungan2, LUO Hongbin1, XU Wanting1   

  1. 1. School of Forestry,Southwest Forestry University,Kunming 650224,China
    2. School of Forestry,Guangxi University,Nanning 530004,China
  • Received:2021-08-18 Revised:2021-09-29 Online:2021-10-28 Published:2021-11-29
  • Contact: YUE Cairong

摘要:

机载LiDAR数据目前在森林生物量、树高以及郁闭度估测方面得到广泛研究,但估测林木胸高断面积的研究较少。以高峰林场为研究区,借助机载LiDAR数据并结合地面实测的105块样地反演林分胸高断面积。首先,选取4块坡度以及林分郁闭度有差异的样地,运用渐进不规则三角网(PTIN)、渐进形态学滤波算法(PMF)、布料模拟滤波算法(CSF)和基于插值的滤波方法(IBF)分别对点云数据进行滤波,以便选取最适的滤波方法完成样地滤波;其次,通过随机森林(RF)和迭代的决策树(GBRT)算法分别对林分胸高断面积进行估测;最后,选用精度较好的模型完成林分胸高断面积反演和制图。结果表明:布料模拟滤波算法(CSF)在坡度为25~33°、郁闭度为0.5~0.7的样地环境时,LiDAR数据滤波效果较好,这和研究区的环境基本一致,故选用CSF算法对研究区进行滤波;研究所构建的胸高断面积反演模型中,RF模型泛化能力优于GBRT模型,RF模型的R2为0.77,RMSE为3.99m2/hm2,rRMSE为17.76%;独立样本检验的R2为0.66,RMSE为3.27m2/hm2,rRMSE为14.73%,故采用RF模型完成研究区林分胸高断面积反演。

关键词: 胸高断面积, 机载LiDAR数据, 滤波, 特征选择, 机器学习

Abstract:

Airborne LiDAR data has been widely studied in the estimation of forest biomass,tree height and canopy density,but the research on the estimation of basal area is rare.Taking the Gaofeng Forest Farm as the research area,the forest basal area was inversed by using airborne LiDAR data and combining with 105 sample plots measured on the ground.Firstly,in order to find the optimal filtering method to complete the LiDAR data filtering,four algorithms,namely,progressive triangulated irregular network(PTIN),the progressive morphological filter (PMF),the cloth simulation filter (CSF)and the Interpolation-based filtering (IBF)were used in the LiDAR data for 4 sample plots with different slopes and different forest canopy densities respectively,and then,random forest (RF)and iterative decision tree (GBRT)algorithms were used to estimate the basal area of the forest respectively.Lastly,the model with good precision was selected to complete the inversion and mapping of stand basal area.The results showed that cloth simulation filter (CSF)had good filtering effect on the LiDAR data of the sample plots with slope of 25~33° and canopy density of 0.5~0.7,which was basically consistent with the forest condition of the study area,therefore,CSF algorithm was selected to filter the LiDAR data in this study;in the stand basal area inversion model,the generalization ability of RF model was superior to that of GBRT model,with the R2 of 0.77,RMSE of 3.99m2/hm2 and rRMSE of 17.76%,respectively;while for the independent sample test for the RF model,the correspondent R 2,RMSE and rRMSE was 0.66,3.27m2/hm2,and 14.73% respectively.So RF model was used in the inversion of basal area of forest stand in the study area.

Key words: basal area, airborne LiDAR data, filtering, feature selection, machine learning

中图分类号: