欢迎访问林草资源研究

林业资源管理 ›› 2021›› Issue (6): 37-42.doi: 10.13466/j.cnki.lyzygl.2021.06.007

• 科学研究 • 上一篇    下一篇

基于归一化植被点云的林分平均高及蓄积量反演

王照利1(), 王浩伟2, 杨佳乐1, 段梦琦2, 马胜利1()   

  1. 1.国家林业和草原局西北调查规划设计院,西安 710048
    2.中煤航测遥感集团有限公司,西安 710199
  • 收稿日期:2021-10-09 修回日期:2021-11-10 出版日期:2021-12-28 发布日期:2022-01-12
  • 通讯作者: 马胜利
  • 作者简介:王照利(1971-),男,陕西华县人,高工,硕士,主要从事林业调查规划与“3S”技术在林业领域应用研究。Email: wzlxby@126.com
  • 基金资助:
    中国煤炭地质总局自然资源智能感知科技创新团队(ZMKJ-2020-T04);国家林业和草原局自主研发项目(LC-1-05);中煤总局科技项目(ZMKJ-2020-J09-02)

The Inversion of Average Stand Height and Stock Volume based on Normalized Vegetation Point Cloud

WANG Zhaoli1(), WANG Haowei2, YANG Jiale1, DUAN Mengqi2, MA Shengli1()   

  1. 1. Northwest Surveying,Planning and Designing Institute of National Forestry and Grassland Administration,Xi'an,710048,China
    2. Aerial Photography and Remote Sensing Group Co.Ltd.,Xi'an 710199,China
  • Received:2021-10-09 Revised:2021-11-10 Online:2021-12-28 Published:2022-01-12
  • Contact: MA Shengli

摘要:

提出一种归一化植被点云计算方法,利用植被点云与地面点云的垂直高程差表征去除地形影响的林木绝对高度值,在此基础上提取森林特征变量,使用随机森林算法对研究区林木平均高及蓄积量进行反演估测。结果表明,该方法能够有效提高森林因子的估测精度,林木平均高及蓄积量的拟合精度分别为0.946和0.936。

关键词: 激光雷达, 归一化植被点云, 森林因子反演, 储备林

Abstract:

This paper proposed a normalized vegetation point cloud computing method,which used vertical elevation difference characterization between vegetation point cloud and ground point cloud to remove the absolute height value of forest influenced by topography,on this basis,it extracted forest characteristics variables,and used the random forest algorithm to invert and estimate the average tree height and the forest stock volume within the study area. The result showed that this method can effectively improve the estimation accuracy of forest factors,and the fitting accuracy of average tree height and forest stock volume were 0.946 and 0.936,respectively.

Key words: LiDAR, normalized vegetation point cloud, forest factor inversion, reserve forest

中图分类号: