[1] |
周煜, 胡玉熹. 中国特有植物篦子三尖杉的生物学特性及其保护[J]. 广西植物, 1997,17(3):249-254.
|
[2] |
Wang Ting, Wang Zhen, Xia Fan, et al. Local adaptation to temperature and precipitation in naturally fragmented populations of Cephalotaxus oliveri,an endangered conifer endemic to China[J]. Scientific reports, 2016,6(1):1-12.
doi: 10.1038/s41598-016-0001-8
|
[3] |
Xiao Shu, Mu Zhenqiang, Cheng Chunru, et al. Three new biflavonoids from the branches and leaves of Cephalotaxus oliveri and their antioxidant activity[J]. Natural product research, 2019,33(3):321-327.
doi: 10.1080/14786419.2018.1448817
pmid: 29544363
|
[4] |
国家重点保护野生植物名录.1999.[EB/OL].(1999-09-09)[2021-10-11]. http://www.gov.cn/gongbao/content/2000/content_60072.htm
|
[5] |
国家重点保护野生植物名录.2021.[EB/OL].(2021-09-07)[2021-10-11]. http://www.gov.cn/zhengce/zhengceku/2021-09/09/content_5636409.htm.
|
[6] |
Liao Wenbo, Yang Yong. Cephalotaxus oliveri.The IUCN red list of threatened species 2013:e.T32331A2815247.[DB/OL]. [2021-09-11]. https://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T32331A2815247.en. Accessed on 14 December 2010/24 December 2021.
|
[7] |
陈少瑜, 司马永康, 方波. 篦子三尖杉的遗传多样性及濒危原因[J]. 西北林学院学报, 2003,18(2):29-32.
|
[8] |
司马永康, 余鸿, 杨桂英, 等. 云南省三尖杉属植物的地理分布与环境因子的关系[J]. 林业调查规划, 2004,29(1):83-88.
|
[9] |
陈名慧, 张佰军, 刘正华. 修文石灰岩山地篦子三尖杉灌丛群落多样性研究[J]. 贵州科学, 2011,29(2):56-59.
|
[10] |
缪绅裕, 曾庆昌, 王厚麟, 等. 广东仁化篦子三尖杉种群及其生境特征研究[J]. 林业资源管理, 2014(2):98-104.
|
[11] |
付玉嫔, 司马永康, 方波, 等. 篦子三尖杉的居群结构与动态研究[J]. 广东农业科学, 2015(11):48-54.
|
[12] |
夏江林, 何逢斌, 赵丛笑, 等. 岳篦子三尖杉群落多样性分析[J]. 中国野生植物资源, 2015,34(4):51-54.
|
[13] |
郎学东, 苏建荣, 张志钧, 等. 濒危植物篦子三尖杉的群落特征[J]. 林业科学研究, 2011,24(6):727-735.
|
[14] |
杨宗慧, 郎学东, 李帅锋, 等. 篦子三尖杉群落优势种群生态位和种间关系[J]. 林业科学研究, 2015,28(4):473-478.
|
[15] |
冯邦贤, 韦海霞. 黔东南州篦子三尖杉群落结构特征研究[J]. 湖南林业科技, 2017,44(4):34-42
|
[16] |
符潮, 卢建, 李中阳, 等. 江西篦子三尖杉地理分布及主要群落分析[J]. 江西科学, 2017,35(1):16-22.
|
[17] |
曹基武, 刘春林. 篦子三尖杉生物学特性和繁殖技术[J]. 林业工程学报, 2005,19(6):63-65.
|
[18] |
吴朝斌, 伍铭凯, 杨汉远, 等. 篦子三尖杉育苗技术[J]. 林业实用技术, 2007(8):22-23.
|
[19] |
邹露, 曹福祥, 龙绛雪, 等. 篦子三尖杉愈伤组织的诱导[J]. 经济林研究, 2009,27(2):74-77.
|
[20] |
戴晓勇, 林泽信, 张贵云, 等. 篦子三尖杉种子育苗技术研究[J]. 种子, 2012,31(8):122-125.
|
[21] |
戴晓勇, 任朝辉, 林泽信, 等. 篦子三尖杉的扦插繁殖研究[J]. 种子, 2013,32(7):123-126.
|
[22] |
中国科学院中国植物志委员会. 中国植物志:第七卷[M]. 北京: 科学出版社, 1978.
|
[23] |
Wang Chunbo, Wang Tianzong, Su Yingjuan. Phylogeography of Cephalotaxus oliveri(Cephalotaxaceae)in relation to habitat heterogeneity,physical barriers and the uplift of the Yungui Plateau[J]. Molecular phylogenetics and evolution, 2014,80:205-216.
doi: 10.1016/j.ympev.2014.08.015
pmid: 25160902
|
[24] |
IPCC. Climate Change 2021:The physical science basis.Contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change[R]. Cambridge: Cambridge University Press, 2021.
|
[25] |
Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems[J]. Nature, 2003,421(6918):37-42.
doi: 10.1038/nature01286
|
[26] |
Lenoir J, Gégout J C, Marquet P A, et al. A significant upward shift in plant species optimum elevation during the 20th century[J]. Science, 2008,320(5884):1768-1771.
doi: 10.1126/science.1156831
pmid: 18583610
|
[27] |
Thuiller W, Lavorel S, Araújo M B, et al. Climate change threats to plant diversity in Europe[J]. Proceedings of the National Academy of Sciences, 2005,102(23):8245-8250.
doi: 10.1073/pnas.0409902102
|
[28] |
Alexander J M, Diez J M, Levine J M. Novel competitors shape species' responses to climate change[J]. Nature, 2015,525(7570):515-518.
doi: 10.1038/nature14952
|
[29] |
Rumpf S B, Hülber K, Zimmermann N E, et al. Elevational rear edges shifted at least as much as leading edges over the last century[J]. Global Ecology and Biogeography, 2019,28(4):533-543.
doi: 10.1111/geb.v28.4
|
[30] |
Walther G R, Post E, Convey P, et al. Ecological responses to recent climate change[J]. Nature, 2002,416(6879):389-395.
doi: 10.1038/416389a
|
[31] |
Thomas C D, Cameron A, Green R E, et al. Extinction risk from climate change[J]. Nature, 2004,427(6970):145-148.
doi: 10.1038/nature02121
|
[32] |
Urban M C. Accelerating extinction risk from climate change[J]. Science, 2015,348(6234):571-573.
doi: 10.1126/science.aaa4984
pmid: 25931559
|
[33] |
张童, 黄治昊, 彭杨靖, 等. 基于MaxEnt模型的软枣猕猴桃在中国潜在适生区预测[J]. 生态学报, 2020,40(14):4921-4928.
|
[34] |
吕汝丹, 何健, 刘慧杰, 等. 羽叶铁线莲的分布区与生态位模型分析[J]. 北京林业大学学报, 2019,41(2):70-79.
|
[35] |
Wu Tongwen, Lu Yixiong, Fang Yongjie, et al. The Beijing Climate Center climate system model(BCC-CSM):The main progress from CMIP5 to CMIP6[J]. Geoscientific Model Development, 2019,12(4):1573-1600.
doi: 10.5194/gmd-12-1573-2019
|
[36] |
张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划(Scenario MIP)概况与评述[J]. 气候变化研究进展, 2019,15(5):519-525.
|
[37] |
Sillero N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods[J]. Ecological Modelling, 2011,222(8):1343-1346.
doi: 10.1016/j.ecolmodel.2011.01.018
|
[38] |
Moreno R, Zamora R, Molina J R, et al. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy(MaxEnt)[J]. Ecological Informatics, 2011,6(6):364-370.
doi: 10.1016/j.ecoinf.2011.07.003
|
[39] |
Hanley J A, McNeil B J. The meaning and use of the area under a receiver operating characteristic(ROC)curve[J]. Radiology, 1982,143(1):29-36.
doi: 10.1148/radiology.143.1.7063747
pmid: 7063747
|
[40] |
李璇, 李垚, 方炎明. 基于优化的MaxEnt模型预测白栎在中国的潜在分布区[J]. 林业科学, 2018,54(8):153-164.
|
[41] |
郭彦龙, 卫海燕, 路春燕, 等. 气候变化下桃儿七潜在地理分布的预测[J]. 植物生态学报. 2014,38(3):249-261.
|
[42] |
周润, 慈秀芹, 肖建华, 等. 气候变化对亚热带常绿阔叶林优势类群樟属植物的影响及保护评估[J]. 生物多样性, 2021,29(6):697-711.
|
[43] |
Suggitt A J, Wilson R J, Isaac N J B, et al. Extinction risk from climate change is reduced by microclimatic buffering[J]. Nature Climate Change, 2018,8(8):713-717.
doi: 10.1038/s41558-018-0231-9
|
[44] |
Pearson R G, Dawson T P. Predicting the impacts of climate change on the distribution of species:are bioclimate envelope models useful?[J]. Global ecology and biogeography, 2003,12(5):361-371.
doi: 10.1046/j.1466-822X.2003.00042.x
|