林业资源管理 ›› 2022›› Issue (1): 142-149.doi: 10.13466/j.cnki.lyzygl.2022.01.017
YANG Dan(), LI Chonggui(), ZHANG Jiazheng
摘要:
为了探究深度学习方法基于多时相高分1号影像的森林植被分类效果。以黑龙江省孟家岗林场为研究区,以多时相GF-1影像和数字高程模型(DEM)为数据源,通过提取光谱特征、植被指数、纹理特征以及地形特征构建多特征数据集,并结合VSURF算法进行特征优选。同时,分别采用优化后的U-Net,SegNet,DeepLab V3+模型对森林林分类型进行分类,并与最大似然法、随机森林方法进行对比分析。结果表明:1)利用多时相影像分类精度明显优于单时相影像;2)基于VSURF算法从构建的97个特征中优选出16个特征变量,其中NDVI、RVI、均值、同质性、对比度、相关性以及DEM特征具有较高的贡献性均被保留,其余变量被消除,从而在一定程度上避免“维数灾难”,提高模型效率;3)3种深度学习方法中U-Net模型的分类精度最高,总体精度为86.04%,Kappa系数为0.742,DeepLab V3+模型次之,SegNet模型精度最低。同时,深度学习方法的精度均优于随机森林和最大似然法。基于多时相GF-1影像构建最优特征组合,并结合深度学习方法对森林林分类型分类具有一定的参考价值。
中图分类号: