欢迎访问林草资源研究

林业资源管理 ›› 2022›› Issue (5): 91-98.doi: 10.13466/j.cnki.lyzygl.2022.05.012

• 科学研究 • 上一篇    下一篇

基于车载LiDAR数据的行道树信息提取及安全风险评价

穆田宝1(), 吴琳娜1,2,3(), 张海涛4, 张寒1   

  1. 1.贵州大学 资源与环境工程学院,贵阳 550025
    2.贵州大学 省部共建公共大数据国家重点实验室,贵阳 550025
    3.喀斯特地质资源与环境教育部重点实验室,贵阳 550025
    4.河南财经政法大学 资源与环境学院,郑州 450046
  • 收稿日期:2022-07-13 修回日期:2022-09-11 出版日期:2022-10-28 发布日期:2022-12-23
  • 通讯作者: 吴琳娜
  • 作者简介:穆田宝(1999-),男,内蒙古赤峰人,在读硕士,研究方向为激光雷达遥感。Email:mtb1144@163.com
  • 基金资助:
    国家自然科学基金委员会-贵州省人民政府喀斯特科学研究中心项目(U1612442);贵州大学引进人才科研项目(贵大人基合字〔2017〕78号)

Information Extraction and Security Risk Assessment of Street Trees Based on Vehicle-Borne LiDAR Data

MU Tianbao1(), WU Linna1,2,3(), ZHANG Haitao4, ZHANG Han1   

  1. 1. College of Resources and Environmental Engineering,Guizhou University,Guiyang 550025,China
    2. State Key Laboratory of Public Big Data,Guizhou University,Guiyang 550025,China
    3. Key Laboratory of Karst Georesources and Environment,Ministry of Education,Guiyang 550025,China
    4. Collge of Resources and Environment,Henan University of Economics and Law,Zhengzhou 450046,China
  • Received:2022-07-13 Revised:2022-09-11 Online:2022-10-28 Published:2022-12-23
  • Contact: WU Linna

摘要:

基于激光雷达点云数据快速精准地获取城市行道树的结构特征和安全风险状况,对于辅助智慧城市管理具有重要意义。针对行道树参数获取中LiDAR点云数据对于形态特征不明显区域难以分割的问题,研究提出了一种树干中心点圆形索引的行道树单株木提取方法。首先,根据高程信息获取树干层切片点云并基于改进的DBSCAN聚类算法对切片数据进行分割;其次,结合地物形态特征识别树干并获取中心点,基于中心点的圆形索引方法完成单株木结构特征信息提取;最后,结合风险矩阵法对研究区内行道树的稳定性和其对交通影响的安全风险进行评价。结果表明:提出的单株木提取方法能有效提高形态特征不明显区域中行道树单株木分割精度,可以准确获取行道树的数量、形态和位置等结构参数信息;安全风险评价发现,研究区内大部分行道树稳定性和对交通影响风险处于Ⅰ级可忽略风险状态,但部分行道树稳定性和对交通影响风险为Ⅱ、Ⅲ级,这些树木主要分布在研究区行道树密集交错的区域。研究结果可为相关部门及时有效地监测和管理行道树提供相应的决策支持。

关键词: 车载LiDAR, 行道树, 信息提取, 安全风险评价

Abstract:

Rapid and accurate acquisition of the structural characteristics and safety risk status of urban street trees based on LiDAR point cloud data is of great significance to assist smart city management.In order to solve the problem that LiDAR point cloud data is difficult to segment regions with unclear morphological characteristics in street tree parameter acquisition,a individual tree extraction method based on circular index of trunk center point was proposed.Firstly,it obtained the sliced point cloud of the trunk layer according to the elevation information,then,segmented the sliced data based on the improved DBSCAN clustering algorithm.Secondly,it identified the trunk through the morphological characteristics of the ground features and obtained the central point,so as to complete the extraction through the circular index method based on the central point.Finally,it combined with the risk matrix method to evaluate the safety risk of the stability and traffic impact of the street trees in the study area.The results showed that the proposed individual tree extraction method could effectively improve the segmentation accuracy of individual trees of street trees in areas with unclear morphological characteristics,and accurately obtain the structural parameter information such as the number,shape and position of street trees;The safety risk assessment found that the stability of most street trees and the risk of traffic impact in the study area werein a level I negligible risk state,but there were some street trees whose stability and risk of traffic impact were level II and level III.These trees were mainly distributed in the area with dense and interlaced roadside trees in the study area.The results can provid corresponding decision support for relevant departments to monitor street trees in a timely and effective manner.

Key words: vehicle-borne LiDAR, extraction of information, street trees, security risk assessment

中图分类号: