[1] |
Lee K S, Kim D. Global dynamics of a pine wilt disease transmission model with nonlinear incidence rates[J]. Applied Mathematical Modelling, 2013, 37(6):4561-4569.
doi: 10.1016/j.apm.2012.09.042
|
[2] |
Manuel M M. Pine Wilt Disease:A Worldwide Threat to Forest Ecosystems[M]. Springer,Dordrecht: 2008.
|
[3] |
叶建仁. 松材线虫病在中国的流行现状、防治技术与对策分析[J]. 林业科学, 2019, 55(9):1-10.
|
[4] |
Syifa M, Park S J, Lee C W. Detection of the pine wilt disease tree candidates for drone remote sensing using artificial intelligence techniques[J]. Engineering, 2020, 6(8):919-926.
doi: 10.1016/j.eng.2020.07.001
|
[5] |
张竞成, 袁琳, 王纪华, 等. 作物病虫害遥感监测研究进展[J]. 农业工程学报, 2012, 28(20):1-11.
|
[6] |
任艳中, 王弟, 李轶涛, 等. 无人机遥感在森林资源监测中的应用研究进展[J]. 中国农学通报, 2020, 36(8):111-118.
|
[7] |
Iordache M D, Mantas V, Baltazar E, et al. A machine learning approach to detecting pine wilt disease using airborne spectral imagery[J]. Remote Sensing, 2020, 12(14):2280.
doi: 10.3390/rs12142280
|
[8] |
Dash J P, Watt M S, Pearse G D, et al. Assessing very high-resolution UAV imagery for monitoring forest health during a simulated disease outbreak[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 131:1-14.
doi: 10.1016/j.isprsjprs.2017.07.007
|
[9] |
赵晋陵, 金玉, 叶回春, 等. 基于无人机多光谱影像的槟榔黄化病遥感监测[J]. 农业工程学报, 2020, 36(8):54-61.
|
[10] |
Jaafar W S W M, Woodhouse I H, Silva C A, et al. Improving individual tree crown delineation and attributes estimation of tropical forests using airborne LiDAR data[J]. Forests, 2018, 9(12):759.
doi: 10.3390/f9120759
|
[11] |
Yu Run, Luo Youqing, Zhou Quan, et al. A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 101(1):102363
doi: 10.1016/j.jag.2021.102363
|
[12] |
Navarro J A, Algeet N, Fernández-Landa A, et al. Integration of UAV, Sentinel-1,and Sentinel-2 data for mangrove plantationaboveground biomass monitoring in Senegal[J]. Remote Sensing, 2019, 11(1):77.
doi: 10.3390/rs11010077
|
[13] |
Ok A O, Ozdarici-Ok A. 2-D delineation of individual citrus trees from UAV-based dense photogrammetric surface models[J]. International Journal of Digital Earth, 2018, 11(6):583-608.
doi: 10.1080/17538947.2017.1337820
|
[14] |
Nevalainen O, Honkavaara E, Tuominen S, et al. Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging[J]. Remote Sensing, 2017, 9(3):185.
doi: 10.3390/rs9030185
|
[15] |
Luís P, Pedro M, Luís M, et al. Monitoring of chestnut trees using machine learning techniques applied to UAV-Based multispectral data[J]. Remote Sensing, 2020, 12(18):3032.
doi: 10.3390/rs12183032
|
[16] |
Minařík, Langhammer J,Lendzioch T. Detection of bark beetle disturbance at tree level using UAS multispectral imagery and deep learning[J]. Remote Sensing, 2021, 13(23):4768.
doi: 10.3390/rs13234768
|
[17] |
Cardil A, Otsu K, Pla M, et al. Quantifying pine processionary moth defoliation in a pine-oak mixed forest using unmanned aerial systems and multispectral imagery.[J]. PLoS ONE, 2019, 14(3):e0213027-e0213027.
doi: 10.1371/journal.pone.0213027
|
[18] |
Minařík, Langhammer J,Lendzioch T. Automatic Tree Crown Extraction from UAS Multispectral Imagery for the Detection of Bark Beetle Disturbance in Mixed Forests[J]. Remote Sensing, 2020, 24(12):4081.
|
[19] |
徐华潮, 骆有庆, 张廷廷, 等. 松材线虫自然侵染后松树不同感病阶段针叶光谱特征变化[J]. 光谱学与光谱分析, 2011, 31(5):1352-1356.
|
[20] |
Santos CSS, Vasconcelos MW. Identification of genes differentially expressed in Pinus pinaster and Pinus pinea after infection with the pine wood nematode[J]. EUR J PLANT PATHOL, 2012, 132(3):407-418.
doi: 10.1007/s10658-011-9886-z
|
[21] |
Li Wenkai, Guo Qinghua, Jakubowski M K, et al. A new method for segmenting individual trees from the lidar point cloud[J]. Photogrammetric Engineering & Remote Sensing, 2012, 78(1):75-84.
|
[22] |
Lu Xingcheng, Guo Qinghua, Li Wenkai, et al. A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud data[J]. ISPRS Journal of Photogrammetry and Remote sensing, 2014, 94:1-12.
doi: 10.1016/j.isprsjprs.2014.03.014
|
[23] |
Gitelson A A, Kaufman Y J, Merzlyak M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote sensing of Environment, 1996, 58(3):289-298.
doi: 10.1016/S0034-4257(96)00072-7
|
[24] |
Vincini M, Frazzi E, D’Alessio P, et al. A broad-band leaf chlorophyll vegetation index at the canopy scale[J]. PrecisionAgriculture, 2008, 9(5):303-319.
|
[25] |
Jordan C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4):663-666.
doi: 10.2307/1936256
|
[26] |
Ahamed T, Tian L, Zhang Y, et al. A review of remote sensing methods for biomass feedstock production[J]. Biomass and bioenergy, 2011, 35(7):2455-2469.
doi: 10.1016/j.biombioe.2011.02.028
|
[27] |
Miura T, Yoshioka H, Fujiwara K, et al. Inter-comparison of ASTER and MODIS surface reflectance and vegetation index products for synergistic applications to natural resource monitoring[J]. Sensors, 2008, 8(4):2480-2499.
pmid: 27879830
|
[28] |
Jiang Z, Huete A R, Didan K, et al. Development of a two-band enhanced vegetation index without a blue band[J]. Remote sensing of Environment, 2008, 112(10):3833-3845.
doi: 10.1016/j.rse.2008.06.006
|
[29] |
Wang Fumin, Huang Jingfeng, Tang Yanlin, et al. New vegetation index and its application in estimating leaf area index of rice[J]. Rice Science, 2007, 14(3):195-203.
|
[30] |
Tucker C J, Elgin Jr J H, McMurtreyIii J E, et al. Monitoring corn and soybean crop development with hand-held radiometer spectral data[J]. Remote Sensing of Environment, 1979, 8(3):237-248.
doi: 10.1016/0034-4257(79)90004-X
|
[31] |
Qi J G, Chehbouni A R, Huete A R, et al. A modified soil adjusted vegetation index[J]. Remote Sensing of Environment, 1994, 48(2):119-126.
doi: 10.1016/0034-4257(94)90134-1
|
[32] |
Fitzgerald G J, Rodriguez D, Christensen L K, et al. Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments[J]. Precision Agriculture, 2006, 7(4):233-248.
doi: 10.1007/s11119-006-9011-z
|
[33] |
Steven M D. The sensitivity of the OSAVI vegetation index to observational parameters[J]. Remote Sensing of Environment, 1998, 63(1):49-60.
doi: 10.1016/S0034-4257(97)00114-4
|
[34] |
Gitelson A A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation[J]. Journal of plant physiology, 2004, 161(2):165-173.
pmid: 15022830
|
[35] |
刘笑笑, 王亮, 徐胜华, 等. 一种后向迭代的森林生物量遥感特征选择方法[J]. 测绘科学, 2017, 42(5):100-105.
|
[36] |
Breiman L. Random forests[J]. Machine learning, 2001, 45(1):5-32.
doi: 10.1023/A:1010933404324
|
[37] |
VapnikV. The nature of statistical learning theory[M]. New York: Springer Verlag, 1995:25-27.
|
[38] |
Snoek J, Larochelle H, Adams R P. Practical Bayesian optimization of machine learning algorithms[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems-Volume 2.(2012-08-29)[2022-08-07].http://arXiv.org/abs/1206.2944.
|
[39] |
Windrim L, Carnegie A J, Webster M, et al. Tree detection and health monitoring in multispectral aerial imagery and photogrammetric pointclouds using machine learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:2554-2572.
doi: 10.1109/JSTARS.2020.2995391
|
[40] |
金玉. 槟榔黄化病多源遥感数据监测研究[D]. 合肥: 安徽大学, 2020.
|
[41] |
Xu Zhong, Shen Xin, Cao Lin, et al. Tree species classification using UAS-based digital aerial photogrammetry point clouds and multispectral imageries in subtropical natural forests[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 92:102173
doi: 10.1016/j.jag.2020.102173
|
[42] |
Guerra-Hernández J, Cosenza D N, Rodriguez L C E, et al. Comparison of ALS-and UAV(SfM)-derived high-density point clouds for individual tree detection in Eucalyptus plantations[J]. International Journal of Remote Sensing, 2018, 39(15/16):5211-5235.
doi: 10.1080/01431161.2018.1486519
|
[43] |
刘见礼, 张志玉, 倪文俭, 等. 无人机影像匹配点云单木识别算法[J]. 遥感信息, 2019, 34(1):93-101.
|
[44] |
曾健, 张晓丽, 周雪梅, 等. 倾斜摄影测量技术提取落叶松人工林地形信息[J]. 北京林业大学学报, 2019, 41(8):1-12.
|
[45] |
刘家福, 李林峰, 任春颖, 等. 基于特征优选的随机森林模型的黄河口滨海湿地信息提取研究[J]. 湿地科学, 2018, 16(2):97-105.
|
[46] |
刘文雅, 潘洁. 基于神经网络的马尾松叶绿素含量高光谱估算模型[J]. 应用生态学报, 2017, 28(4):1128-1136.
doi: 10.13287/j.1001-9332.201704.035
|
[47] |
Yu Run, Luo Youqing, Zhou Quan, et al., et al. Early detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery[J]. Forest Ecology and Management, 2021, 497:119493.
doi: 10.1016/j.foreco.2021.119493
|