欢迎访问林草资源研究

林业资源管理 ›› 2023›› Issue (2): 57-63.doi: 10.13466/j.cnki.lyzygl.2023.02.008

• 科学研究 • 上一篇    下一篇

基于区域化特征分析的活立木生物量调查抽样优化

吴恒1(), 刘浪1, 陆驰2, 王保云3()   

  1. 1.国家林业和草原局西南调查规划院,昆明 650031
    2.西南林业大学,昆明 650224
    3.云南师范大学,昆明 650092
  • 收稿日期:2022-12-18 修回日期:2023-04-21 出版日期:2023-04-28 发布日期:2023-06-26
  • 通讯作者: 王保云(1977-),男,云南玉溪人,副教授,博士,主要从事机器学习和大数据分析研究。Email:wspbmly@163.com
  • 作者简介:吴恒(1990-),男,云南曲靖人,高级工程师,博士,主要从事林草资源调查监测与规划设计工作。Email:wuheng@nwsuaf.edu.cn
  • 基金资助:
    国家林业和草原局西南调查规划院科技项目“基于区域化特征分析的森林碳储量年度监测抽样设计优化研究”(2023-09)

Sampling Optimization of Stand Biomass Survey Based on Regional Characteristics Analysis

WU Heng1(), LIU Lang1, LU Chi2, WANG Baoyun3()   

  1. 1. Southwest Survey and Planning Institute,National Forestry and Grassland Administration,Kunming 650031,China
    2. Southwest Forestry University,Kunming 650224,China
    3. Yunnan Normal University,Kunming 650092,China
  • Received:2022-12-18 Revised:2023-04-21 Online:2023-04-28 Published:2023-06-26

摘要:

森林生物量调查监测是正确认识和管理森林生态系统的基础性工作,分析已有的调查资料是提高抽样效率的有效途径。采用四川省森林资源连续清查第六次至第九次数据,即2002年、2007年、2012年和2017年4个年度固定样地的调查数据,进行区域化特征分析,基于聚类分布模式进行空间分层抽样,采用不等概率抽样估计总体特征值。结果表明:区域化特征聚类分层能有效降低层内的方差,作为空间分层抽样的先验信息;在95%可靠性下,空间分层抽样活立木生物量估计精度的均值为93.41%,显著减少了外业样地调查工作量,能有效地提高抽样效率。

关键词: 抽样技术, 区域化特征, 空间相关性, 连续清查

Abstract:

Forest biomass monitoring is the basic work to correctly understand and manage forest ecosystem.Analyzing existing data is an effective way to improve sampling efficiency.In this study,regional characteristics analysis tool was used with the data from the sixth to ninth continuous forest inventories of Sichuan Province in 2002,2007,2012 and 2017,respectively.Combined with the regional characteristics analysis,some samples from the selected samples by stratified sampling were selected to form annual sampling plots.Probability sampling estimation was applied for sampling efficiency analysis.The results show that the regional characteristics analysis can effectively reduce the variance within each stratification,which can be used as the prior information of spatial stratification sampling.With 95% reliability,the average accuracy of spatial stratified sampling of stand biomass estimation was 93.41%,which greatly reduced the workload of field survey,effectively improved sampling efficiency.

Key words: sampling technique, regional characteristics, spatial correlation, continuous forest inventories

中图分类号: