[1] |
Houghton J T, Callander B A, Varney S K. The Supplementary Report to the IPCC Scientific Assessment[J]. Climate Change, 1992, 58(10):1189-1194.
|
[2] |
周波涛. 全球气候变暖:浅谈从AR5到AR6的认知进展[J]. 大气科学学报, 2021, 44(5):667-671.
|
[3] |
樊星, 秦圆圆, 高翔. IPCC第六次评估报告第一工作组报告主要结论解读及建议[J]. 环境保护, 2021, 49(Z 2):44-48.
|
[4] |
Yong S K, Makoto K, Takakai F, et al. Greenhouse gas emissions after a prescribed fire in white birch-dwarf bamboo stands in northern Japan,focusing on the role of charcoal[J]. European Journal of Forest Research, 2011, 130(6):1031-1044.
doi: 10.1007/s10342-011-0490-8
|
[5] |
Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide(N2O):The dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949):123-125.
doi: 10.1126/science.1176985
pmid: 19713491
|
[6] |
Abalos D, Groenigen J W V, Deyn G B D. What plant functional traits can reduce nitrous oxide emissions from intensively managed grasslands?[J]. Global Change Biology, 2018, 24(1):248-258.
doi: 10.1111/gcb.13827
pmid: 28727214
|
[7] |
Khalil M A K, Easmussen R A. Nitrous oxide:Trends and global mass balance over the last 3000 years[J]. Annal Glaciology, 1988, 10:73-79.
|
[8] |
Shcherbak I, Millar N, Robertson G P. Global metaanalysis of the nonlinear response of soil nitrous oxide(N2O)emissions to fertilizer nitrogen[J]. Proceedings of the National Academy of Sciences, 2014, 111(25):9199-9204.
doi: 10.1073/pnas.1322434111
|
[9] |
国家林业和草原局. 中国森林资源报告[M].中国林业出版社. 2019.
|
[10] |
傅民杰, 王传宽, 王颖, 等. 气候暖化对解冻期不同纬度兴安落叶松林土壤氧化亚氮释放的影响[J]. 应用生态学报, 2009, 20(7):1635-1642.
|
[11] |
肖冬梅, 王淼, 姬兰柱, 等. 长白山阔叶红松林土壤N2O排放通量的变化特征[J]. 生态学杂志, 2004(5):46-52.
|
[12] |
孙向阳, 徐化成. 北京低山区两种人工林土壤中N2O排放通量的研究[J]. 林业科学, 2001(5):57-63.
|
[13] |
莎仁图雅, 段玉玺, 武佳琪. 内蒙古大青山不同林分密度油松人工林碳密度研究[J]. 内蒙古林业科技, 2013, 39(3):13-16.
|
[14] |
陈丽霞. 内蒙古大青山森林土壤微生物量碳氮及微生物特征研究[D]. 呼和浩特: 内蒙古农业大学, 2015.
|
[15] |
Ma Xiuzhi, Wang Shiping, Jiang Gaoming, et al. Short-term effect of targeted placements of sheep excrement on grassland in inner mongolia on soil and plant parameters[J]. Communications in Soil Science & Plant Analysis, 2007, 38(11/12):1589-1604.
|
[16] |
Oertel C, Matschullat J, Zurba K, et al. Greenhouse gas emissions from soils-A review[J]. Chemie der Erde-Geochemistry, 2016, 76(3):327-352.
doi: 10.1016/j.chemer.2016.04.002
|
[17] |
Fisher D A, Lacelle D, Pollard W. A model of unfrozen water content and its transport in icy permafrost soils:Effects on ground ice content and permafrost stability[J]. Permafrost and Periglacial Processes, 2019, 31(1):184-199.
doi: 10.1002/ppp.v31.1
|
[18] |
Li Zhaolei, Zeng Zhaoqi, Tian Dashuan, et al. Global patterns and controlling factors of soil nitrification rate[J]. Global Change Biology, 2020, 26(7):4147-4157.
doi: 10.1111/gcb.15119
pmid: 32301539
|
[19] |
梁东丽, 同延安, Emteryd O, 等. 干湿交替对旱地土壤N2O气态损失的影响[J]. 干旱地区农业研究, 2002(2):28-31.
|
[20] |
齐玉春, 董云社. 土壤氧化亚氮产生、排放及其影响因素[J]. 地理学报, 1999(6):534-542.
doi: 10.11821/xb199906007
|
[21] |
谢军飞, 李玉娥. 土壤温度对北京旱地农田N2O排放的影响[J]. 中国农业气象, 2005(1):8-11.
|
[22] |
胡承彪, 韦源连, 梁宏温, 等. 两种森林凋落物分解及其土壤效应的研究[J]. 广西农业大学学报, 1992(4):47-52.
|
[23] |
王鹤松, 张劲松, 孟平, 等. 侧柏人工林地土壤呼吸及其影响因子的研究[J]. 土壤通报, 2009, 40(5):1031-1035.
|
[24] |
黄国宏, 陈冠雄, 吴杰, 等. 东北典型旱作农田N2O和CH4排放通量研究[J]. 应用生态学报, 1995(4):383-386.
|
[25] |
高德才, 白娥. 冻融循环期间土壤氧化亚氮排放影响因素[J]. 植物生态学报, 2021, 45(9):1006-1023.
doi: 10.17521/cjpe.2021.0040
|
[26] |
Yanai Y, Toyota K, Okazaki M. Effects of successive soil freeze-thaw cycles on soil microbial biomass and organic matter decomposition potential of soils[J]. Soil Science and Plant Nutrition, 2004, 50:821-829.
doi: 10.1080/00380768.2004.10408542
|
[27] |
Freppaz M, Williams B L, Edwards A C, et al. Simulating soil freeze/thaw cycles typical of winter alpine conditions:implications for N and P availability[J]. Applied Soil Ecology, 2007, 35:247-255.
doi: 10.1016/j.apsoil.2006.03.012
|
[28] |
Pelster D E, Chantigny M H, Rochette P, et al. Crop residue incorporation alters soil nitrous oxide emissions during freeze-thaw cycles[J]. Canadian Journal of Soil Science, 2013, 93:415-425.
doi: 10.4141/cjss2012-043
|
[29] |
Nottingham A T, Bååth E, Reischke S, et al. Adaptation of soil microbial growth to tempera ture:Using a tropical elevation gradient to predict future changes[J]. Global Change Biology, 2019, 25:827-838.
doi: 10.1111/gcb.14502
pmid: 30372571
|