[1] |
Shen Fangfang, Wu Jianping, Fan Houbao, et al. Soil N/P and C/P ratio regulate the responses of soil microbial community composition and enzyme activities in a long-term nitrogen loaded Chinese fir forest[J]. Plant and Soil, 2019, 436(1-2):91-107.
doi: 10.1007/s11104-018-03912-y
|
[2] |
Nottingham A T, Whitaker J, Ostle N J, et al. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient[J]. Ecology Letters, 2019, 22(11):1889-1899.
doi: 10.1111/ele.13379
pmid: 31489760
|
[3] |
边雪廉, 岳中辉, 焦浩, 等. 土壤酶对土壤环境质量指示作用的研究进展[J]. 土壤, 2015(4):634-640.
|
[4] |
Salazar S, Sánchez L E, Alvarez J, et al. Correlation among soil enzyme activities under different forest system management practices[J]. Ecological Engineering, 2011, 37(8):1123-1131.
doi: 10.1016/j.ecoleng.2011.02.007
|
[5] |
Moghimian N, Hosseini S M, Kooch Y, et al. Impacts of changes in land use/cover on soil microbial and enzyme activities[J]. Catena, 2017, 157:407-414.
doi: 10.1016/j.catena.2017.06.003
|
[6] |
Nivelle E, Verzeaux J, Chabot A, et al. Does nitrogen fertilization history affects short-term microbial responses and chemical properties of soils submitted to different glyphosate concentrations?[J]. Plos One, 2017, 12(5):e0178342.
doi: 10.1371/journal.pone.0178342
|
[7] |
Błońska E, Lasota J, Gruba P. Effect of temperate forest tree species on soil dehydrogenase and urease activities in relation to other properties of soil derived from loess and glaciofluvial sand[J]. Ecological Research, 2016, 31(5):655-664.
doi: 10.1007/s11284-016-1375-6
|
[8] |
王凤娟, 秦绍龙, 张鸿雁, 等. 不同森林类型土壤酶活性和微生物数量特征研究[J]. 陕西农业科学, 2021, 67(10):75-80.
|
[9] |
韩世忠, 高人, 李爱萍, 等. 中亚热带地区两种森林植被类型土壤微生物群落结构[J]. 应用生态学报, 2015(7):2151-2158.
|
[10] |
舒蛟靖, 陈奇伯, 王艳霞, 等. 华山松人工林土壤酶活性与理化因子的通径分析[J]. 东北林业大学学报, 2014(9):88-92.
|
[11] |
Ye Yingying, Liu Shujuan, Zhang Wei, et al. Dynamics of soil microbial biomass and soil enzyme activity along a vegetation restoration gradient in a karst peak-cluster depression area[J]. Acta Ecologica Sinica, 2015, 35(21):6974-6982.
|
[12] |
魏圣钊, 李林, 骆晓, 等. 不同连栽代次的巨桉(Eucalyptus grandis)人工林土壤酶活性及其与土壤理化性质的关系[J]. 应用与环境生物学报, 2019, 25(6):1312-1318.
|
[13] |
Hedo J, ME L, WicBaena C, et al. Experimental site and season over-control the effect of Pinus halepensis in microbiological properties of soils under semiarid and dry conditions[J]. Journal of Arid Environments, 2015, 116:44-52.
doi: 10.1016/j.jaridenv.2015.01.014
|
[14] |
吴际友, 叶道碧, 王旭军. 长沙市城郊森林土壤酶活性及其与土壤理化性质的相关性[J]. 东北林业大学学报, 2010, 38(3):97-99.
|
[15] |
Cui Erqian, Huang Kun, Arain M A, et al. Vegetation functional properties determine uncertainty of simulated ecosystem productivity:A traceability analysis in the East Asian Monsoon region[J]. Global Biogeochemical Cycles, 2019, 33(6):668-689.
doi: 10.1029/2018GB005909
|
[16] |
杨媛媛, 陈奇伯, 黎建强, 等. 滇中地区常绿阔叶林土壤酶活性与理化因子通径分析[J]. 中南林业科技大学学报, 2017(3):86-91.
|
[17] |
袁勇, 李小英. 森林类型自然保护区土壤养分综述[J]. 中国农学通报, 2016(5):75-82.
doi: 10.11924/j.issn.1000-6850.casb15090055
|
[18] |
邓华, 高明, 龙翼, 等. 石盘丘小流域不同土地利用方式下土壤氮磷流失形态及通量[J]. 环境科学, 2021, 42(1):251-261.
|
[19] |
袁勇, 李小英, 刘晓梅, 等. 纳板河自然保护区不同坡向和坡位的常绿阔叶林土壤养分[J]. 东北林业大学学报, 2016(3):12-15.
|
[20] |
申佳艳, 李小英, 袁勇. 纳板河自然保护区不同森林群落土壤养分特征研究[J]. 中国农学通报, 2017(5):54-60.
doi: 10.11924/j.issn.1000-6850.casb16080029
|
[21] |
关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986.
|
[22] |
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2005.
|
[23] |
席守鸿, 王玉凤, 谭玲, 等. 南亚热带乡土阔叶树种和桉树人工林土壤酶活性分析[J]. 广西林业科学, 2022, 51(3):317-325.
doi: 10.19692/j.issn.1006-1126.20220303
|
[24] |
A'Bear A D, Jones T H, Kandeler E, et al. Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity[J]. Soil Biol Biochem, 2014, 70:151-158.
doi: 10.1016/j.soilbio.2013.12.017
|
[25] |
裴丙, 朱龙飞, 梁红艳, 等. 太行山低山丘陵区不同人工林型对土壤性质及酶活性的影响[J]. 干旱区资源与环境, 2017, 31(10):190-195.
|
[26] |
杨翠萍, 马勇刚. 塔里木河上游连作棉田土壤脲酶动力学特征与环境因子的相关分析[J]. 水土保持研究, 2018, 25(2):131-136.
|
[27] |
Chen Xiaohua, Chen Zongzhu, Lei Jinrui, et al. Relationship between soil enzyme activities and physicochemical properties in Mangrove Wetland of Qinglan Port[J]. Forest Research, 2022, 35(2):171-179.
|
[28] |
Sun Hui, Zhang Jianfeng, Wang Rongjia, et al. Effects of vegetation restoration on soil enzyme activity in copper and coal mining areas[J]. Environmental Management, 2021, 68:366-376.
doi: 10.1007/s00267-021-01509-3
pmid: 34313823
|
[29] |
Zhao Manxing, Yu Guangmei, Bai Erle, et al. Seasonal dynamics of soil enzyme activity in vegetation restoration area of Loess Plateau in northern Shaanxi[J]. Chinese Journal of Soil Science, 2020, 51(1):105-114.
|
[30] |
陈彩虹, 叶道碧. 4种人工林土壤酶活性与养分的相关性研究[J]. 中南林业科技大学学报, 2010(6):64-68.
|
[31] |
葛晓改, 肖文发, 曾立雄, 等. 三峡库区不同林龄马尾松土壤养分与酶活性的关系[J]. 应用生态学报, 2012(2):445-451.
|
[32] |
Yin Rui, Deng Huan, Wang Huili, et al. Vegetation type affects soil enzyme activities and microbial functional diversity following re-vegetation of a severely eroded red soil in sub-tropical China[J]. Catena, 2014, 115:96-103.
doi: 10.1016/j.catena.2013.11.015
|
[33] |
Nie Xiaojun, Zhang Jianhui, Gao Han. Soil enzyme activities on eroded slopes in the Sichuan Basin,China[J]. Pedosphere, 2015, 25(4):489-500.
doi: 10.1016/S1002-0160(15)30030-8
|
[34] |
Cattaneo F, Di Gennaro P, Barbanti L, et al. Perennial energy cropping systems affect soil enzyme activities and bacterial community structure in a South European agricultural area[J]. Applied Soil Ecology, 2014, 84:213-222.
doi: 10.1016/j.apsoil.2014.08.003
|
[35] |
Mijangos I, Epelde L, Garbisu C, et al. Modification of soil enzyme activities as a consequence of replacing meadows by pine plantations under temperate climate[J]. Pedobiologia, 2014, 57(2):61-66.
doi: 10.1016/j.pedobi.2013.12.006
|
[36] |
王乐乐. 北京山地森林土壤脲酶特征研究[D]. 北京: 北京林业大学, 2008.
|
[37] |
姜海燕. 大兴安岭兴安落叶松林土壤微生物与土壤酶活性研究[D]. 呼和浩特: 内蒙古农业大学, 2010.
|
[38] |
刘淑娟, 张伟, 王克林, 等. 桂西北喀斯特峰丛洼地不同植被演替阶段的土壤脲酶活性[J]. 生态学报, 2011(19):5789-5796.
|
[39] |
黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000.
|