欢迎访问林草资源研究

林业资源管理 ›› 2023›› Issue (4): 150-160.doi: 10.13466/j.cnki.lyzygl.2023.04.018

• 技术应用 • 上一篇    下一篇

基于深度学习的森林火灾烟雾监测

郑琰睿1(), 杨林剑2, 李曙光1(), 张永炬3   

  1. 1.浙江科技学院 自动化与电气工程学院,杭州 310000
    2.浙江伟星新型建材股份有限公司 智能制造中心,浙江 台州 318000
    3.台州学院 智能制造学院,浙江 台州 318000
  • 收稿日期:2023-05-09 修回日期:2023-06-20 出版日期:2023-08-28 发布日期:2023-10-16
  • 通讯作者: 李曙光(1982-),男,浙江兰溪人,副教授,博士,主要研究方向:自动化检测技术与精密测量。Email:lishuguang@zust.edu.cn
  • 作者简介:郑琰睿(1998-),男,山东烟台人,硕士研究生,主要研究方向:深度学习与图像处理。Email:yr-zheng@foxmail.com
  • 基金资助:
    浙江省基础公益研究计划项目“基于高灵敏光学弱磁探测的管道缺陷无损云检测系统应用基础研究”(LGF22F010009)

Deep Learning-Based Forest Fire Smoke Detection

ZHENG Yanrui1(), YANG Linjian2, LI Shuguang1(), ZHANG Yongju3   

  1. 1. School of Automation and Electrical Engineering,Zhejiang University of Science and Technology,Hangzhou 310000,China
    2. Intelligent Manufacturing Center,Zhejiang Weixing New Building Materials Co.,Ltd.,Taizhou,Zhejiang 318000,China
    3. Intelligent Manufacturing Academy,Taizhou University,Taizhou,Zhejiang 318000,China
  • Received:2023-05-09 Revised:2023-06-20 Online:2023-08-28 Published:2023-10-16

摘要:

为了第一时间发现森林火灾,避免因森林火灾造成严重后果,提出以森林火灾烟雾为主要目标的检测模型YOLO-SCW,在YOLOv7的基础上,引入SPD-Conv层,以减小特征提取过程中小目标特征缺失的问题。之后在检测头金字塔池化部分增加坐标准意力机制模块,通过将位置信息编码到通道中,增加了模型对目标的关注度,并且减少了背景对检测效果的干扰。最后,通过WIoU矩形框损失函数,提高了预测框的回归速度与精度。在测试过程中,改进后的YOLO-SCW较YOLOv7模型mAP提高了9.1%,并减少了误检与漏检现象,证明YOLO-SCW有着更好的特征提取能力与泛化能力,对森林火灾烟雾监测任务表现出色。

关键词: YOLO-SCW, 森林火灾烟雾监测, 目标检测, 深度学习, 损失函数

Abstract:

In order to detect forest fires in the first time and avoid serious consequences caused by forest fires,a detection model YOLO-SCW with forest fire smoke as the main target is proposed,and the SPD-Conv layer is introduced based on YOLOv7 to reduce the problem of missing features of small targets in the feature extraction process.Then,the Coordinate Pay module is added in the pooling part of the detection head pyramid,and the location information is encoded into the channel,which increases the attention of the modelto the target and reduces the interference of the background on the detection effect.Finally,the WIoU rectangular box loss function is used to improve the regression speed and accuracy of the prediction box.During the test,the improved YOLO-SCW increased by 9.1% compared with the mAP of the YOLOv7 model,and reduced the false detection and missed detection,which proved that YOLO-SCW has better feature extraction and generalization ability,and has excellent performance for forest fire smoke detection tasks.

Key words: YOLO-SCW, forest fire smoke detection, object detection, deep learning, loss function

中图分类号: