欢迎访问林草资源研究

林业资源管理 ›› 2015›› Issue (1): 71-76.doi: 10.13466/j.cnki.lyzygl.2015.01.013

• 科学研究 • 上一篇    下一篇

基于随机森林回归模型的思茅松人工林生物量遥感估测

孙雪莲, 舒清态, 欧光龙, 胥辉   

  1. 西南林业大学,昆明 650224
  • 出版日期:2015-02-28 发布日期:2020-12-01
  • 通讯作者: 胥辉(1960-),男,教授,博士。Email:zyxy213@126.com
  • 作者简介:孙雪莲(1990-),女,云南曲靖人,在读硕士,主要研究方向森林测计和林业3S技术应用。Email:sxl524@163.com
  • 基金资助:
    国家林业局林业公益性行业科研专项(201404309);国家自然科学基金(31460194)

Remote Sensing Estimation of the Biomass of Artificial Simao Pine Forest Based on Random Forest Regression

SUN Xuelian, SHU Qingtai, OU Guanglong, XU Hui   

  1. Southwest Forestry University,Kunming 650224,China
  • Online:2015-02-28 Published:2020-12-01

摘要: 以云南省景谷县思茅松人工林为研究对象,以研究区2005年TM影像及2006年森林资源二类调查小班空间属性数据库为信息源,在前期建立思茅松单木生物量模型基础上,在ENVI下提取9个植被指数作为备选自变量,建立研究区思茅松人工林随机森林回归遥感估测模型。结果表明随机森林回归遥感估测模型的决定系数(R2)=0.97,均方根误差(RMSE)=4.97;模型的预估精度(P)=87.67%。利用已经训练好的随机森林估测模型,估测研究区思茅松人工林生物量为3 644 612.00t;单位面积生物量为59.90 t/hm2。研究结果可为其它典型森林类型生物量或碳储量估测提供案例分析。

关键词: 景谷县, 生物量, 随机森林回归, 思茅松

Abstract: The Simao Pine(Pinus kesiya var.langbianensis)plantations in Jinggu county are taken as the research object,and TM remote sensing image in 2005 and the forest resource inventory database for sub-compartment space attribute in 2006 as the data source.Based on the single tree biomass models,9 index as of vegetation were extracted under ENVI as the alternative variables.The estimation model of remote sensing random forest regression of the Simao pine plantations in the study area was established.The results are as followsR2=0.97,RMSE=4.97 and model estimation accuracy =87.76%.By using the estimation model of RF which has been trained,the predicted total biomass of Simao pine plantations was 3 644 612.00t in study area.The biomass of per-unit area was 59.90 t/hm2.The results provide a typical case analysis for estimation of the biomass and carbon stocks of other types of forests.

Key words: Jinggu county, biomass, random forest regression, Pinus kesiya var.langbianensis

中图分类号: