欢迎访问林草资源研究

林业资源管理 ›› 2019›› Issue (5): 33-36.doi: 10.13466/j.cnki.lyzygl.2019.05.007

• 科学研究 • 上一篇    下一篇

北京市二类调查小班蓄积量预估模型研究

陈新云1(), 王文文2, 曾伟生1, 杜鹏志3, 党永锋1, 王威1, 孟京辉2()   

  1. 1. 国家林业和草原局调查规划设计院,北京 100714
    2. 北京林业大学 国家林业与草原局森林经营工程技术研究中心,北京 100083
    3. 北京市林业勘察设计院,北京 100029
  • 收稿日期:2019-07-12 修回日期:2019-10-11 出版日期:2019-10-28 发布日期:2020-09-18
  • 通讯作者: 孟京辉
  • 作者简介:陈新云(1977-),男,湖南益阳人,高工,研究方向:森林资源清查与监测。Email: 375201918@qq.com
  • 基金资助:
    国家重点研发计划(2017YFC0505604)

Study on Stand Volume Models for Sub-compartment Forest Management Inventory in Beijing

CHEN Xinyun1(), WANG Wenwen2, ZENG Weisheng1, DU Pengzhi3, DANG Yongfeng1, WANG Wei1, MENG Jinghui2()   

  1. 1. Academy of Forest Inventory and Planning,National Forestry and Grassland Administration,Beijing 100714,China
    2. Research Center of Forest Management Engineering of National Forestry and Grassland Administration,Beijing Forestry University,Beijing 100083,China
    3. Beijing Municipal Institute of Forest Surveying and Designing,Beijing 100029,China
  • Received:2019-07-12 Revised:2019-10-11 Online:2019-10-28 Published:2020-09-18
  • Contact: MENG Jinghui

摘要:

为解决当前北京市二类调查通过角规绕测技术预估林分蓄积量存在的问题,基于北京市二类调查数据,根据优势树种(组)的不同,将北京市森林划分成10个不同的树种组。在此基础上,利用一类清查数据,以林分蓄积量为因变量,林分参数及立地参数为自变量构建非线性蓄积量预估模型,计算确定系数(R2)、总相对误差(TRE)、估计值的标准差(SEE)、平均系统误差(MSE)、平均预估误差(MPE)和平均百分标准误差(MPSE),并对模型拟合效果进行评价。结果表明:构建的蓄积量预估模型拟合效果较好,各树种组蓄积量预估模型的确定系数(R2)均大于0.94,MPE均小于5%,MPSE基本在10%以下,可以应用于北京市二类调查中蓄积量的预估。

关键词: 树种组, 非线性模型, 蓄积量, 林分调查因子, 森林经理调查

Abstract:

In order to solve the main problems of using angle gauge to estimate the stand volume in forest management inventory (FMI) of Beijing,the forests were divided into 10 different types according to dominant tree species (groups) based on the FMI data.Then,using the data of the 9th (2016) Chinese National Forest Inventory in Beijing,the non-linear models of stand volume for various tree species groups were developed with stand volume per hectare as the dependent variable and stand parameters and site condition parameters as the independent variables.The goodness-of-fit statistics of the models,i.e.,determination coefficient (R2),total relative error (TRE),standard error of estimate (SEE),mean systematic error (MSE),mean prediction error (MPE),and mean percent standard error (MPSE) were calculated.The results show that the models performed well and the values of R2 were all greater than 0.94,MPE’s were less than 5%,and MPSE were almost less than 10%.The models can be applied to estimate the stand volume in the FMI of Beijing.

Key words: sub-comparment, non-linear model, stand volume, stand variable, forest management inventory

中图分类号: