林业资源管理 ›› 2022›› Issue (1): 106-113.doi: 10.13466/j.cnki.lyzygl.2022.01.013
收稿日期:
2021-12-08
修回日期:
2021-12-22
出版日期:
2022-02-28
发布日期:
2022-03-31
通讯作者:
李春干
作者简介:
周相贝(1996-),女,广西河池人,在读硕士,主要研究方向:林业遥感;机载激光雷达林业应用。Email: 基金资助:
ZHOU Xiangbei(), LI Chungan(), YU Zhu, CHEN Zhongchao, SU Kai
Received:
2021-12-08
Revised:
2021-12-22
Online:
2022-02-28
Published:
2022-03-31
Contact:
LI Chungan
摘要:
森林垂直结构分类具有重要的生态学和林学意义。以广西为研究区,通过10阶多项式对样地的离散机载激光点云的高度—覆盖度频率分布进行拟合,得到反映冠层物质垂直分布的垂直冠层剖面(伪波),通过伪波提取有效峰、冠层表面高、层下高、林层高与冠层表面高比值等冠层结构参数,建立分类规则,将林分乔木层垂直结构分为6个类型,采用混淆矩阵评估分类精度,并选取一个面积为1 369km2的区域进行制图以检验分类规则的可推广性。结果表明:1)1 147个样地的总体分类精度为93.9%,Kappa系数为0.913;2)单峰、双峰、3峰剖面的分类错误率为6.2%,7.4%和9.1%,杉木林、松树林、桉树林和阔叶林的分类错误率分别为9%,6.4%,2.4%和6.9%,说明林分垂直结构越复杂分类精度越低;3)各个林层的检测精度均高于96%,漏检率均小于4%,误检率均小于10%,表明各个林层都能够得到准确的检测;4)制图区域的分类规则的覆盖率达到99.8%。研究表明,乔木层垂直结构分类方法具有分类精度高、普适性强、可推广性好、空间信息丰富的特点,适用于大区域亚热带森林乔木层垂直结构分类制图。
中图分类号:
周相贝, 李春干, 余铸, 陈中超, 苏凯. 机载激光雷达亚热带森林乔木层垂直结构分类方法[J]. 林业资源管理, 2022,(1): 106-113.
ZHOU Xiangbei, LI Chungan, YU Zhu, CHEN Zhongchao, SU Kai. Classification of Vertical Forest Structure of Overstory in Subtropical Forests Using Airborne Lidar Data[J]. FOREST RESOURCES WANAGEMENT, 2022,(1): 106-113.
表2
基于冠层连续剖面的乔木层垂直结构分类规则
编号 | 分类规则 | 类型 | |
---|---|---|---|
A(1) | Null | UT1 | |
B(1a) | | OT1 | |
B(1b) | | T1T3 | |
B(2a) | (hp99/3< | OT1T2 | |
B(2b) | (hp99/3< | OT1 | |
B(2c) | (hp99/3< | T1T2T3 | |
B(2d) | (hp99/3< | UT1T2 | |
B(3a) | (3.0< | T1T2T3 | |
B(3b) | (3.0< | OT1T2 | |
B(3c) | (3.0< | UT1T2 | |
B(3d) | (3.0< | OT1 | |
B(3e) | (3.0< | OT1T2 | |
B(3f) | (3.0< | OT1 | |
B(3g) | (3.0< | UT1 | |
B(4a) | (1.0< | T1T2T3 | |
B(4b) | (1.0< | UT1T2 | |
B(4c) | (1.0< | UT1T2 | |
B(4d) | (1.0< | UT1 | |
B(4e) | (1.0≤ | UT1 | |
B(5a) | | UT1 | |
B(5b) | | UT1T2 | |
C(1a) | HPEAK1≥2/3 hp99 and HPEAK2≥hp99/3 and HUL2≥3.0 and(HLA1+HLA2)/HCS<0.65 | OT1 | |
C(1b) | HPEAK1≥2/3hp99 and HPEAK2≥hp99/3 and HUL2≥3.0 and(HLA1+HLA2)/HCS≥0.65 | OT1T2 | |
C(1c) | HPEAK1≥2/3hp99 and HPEAK2≥hp99/3 and HUL2<3.0 and hp99≥15.0 | T1T2T3 | |
C(1d) | HPEAK1≥2/3hp99 and HPEAK2≥hp99/3 and HUL2<3.0 and hp99<15.0 | UT1T2 | |
C(2a) | HPEAK1≥2/3hp99 and(3.0<HPEAK2≤hp99/3)and hp99≥15.0 and CMID<0.1 | T1T3 | |
C(2b) | HPEAK1≥2/3hp99 and(3.0<HPEAK2≤hp99/3)and hp99≥15.0 and CMID≥0.1 | T1T2T3 | |
C(2c) | HPEAK1≥2/3hp99 and(3.0<HPEAK2≤hp99/3)and hp99<15.0 | UT1T2 | |
C(3a) | HPEAK1≥2/3hp99 and(1.0≤HPEAK2<3.0)and hp99≥15.0 and HLA1/HCS<0.65 and HLA2/HCS<0.35 | OT1 | |
C(3b) | HPEAK1≥2/3hp99 and(1.0≤HPEAK2<3.0)and hp99≥15.0 and HLA1/HCS≥0.65 and HLA2/HCS<0.35 | OT1T2 | |
C(3c) | HPEAK1≥2/3hp99 and(1.0≤HPEAK2<3.0)and hp99≥15.0 and HLA1/HCS<0.65 and HLA2/HCS≥0.35 and(HLA1+HLA2)/HCS≥0.80 | T1T2T3 | |
C(3d) | HPEAK1≥2/3hp99 and(1.0≤HPEAK2<3.0)and hp99≥15.0 and HLA1/HCS<0.65 and HLA2/HCS≥0.35 and(HLA1+HLA2)/HCS<0.80 | T1T3 | |
C(3e) | HPEAK1≥2/3hp99 and(1.0≤HPEAK2<3.0)and hp99<15.0 and HLA1/HCS≥0.65 | UT1T2 | |
C(3f) | HPEAK1≥2/3hp99 and(1.0≤HPEAK2<3.0)and hp99<15.0 and HLA1/HCS<0.65 and HUL2<hp99/3 | UT1 | |
C(3g) | HPEAK1≥2/3hp99 and(1.0≤HPEAK2<3.0)and hp99<15.0 and HLA1/HCS<0.65 and HUL2≥hp99/3 | OT1 | |
C(4a) | (hp99/3≤HPEAK1<2/3hp99)and hp99≥15.0 and(HLA1+HLA2)/HCS≥0.8 | T1T2T3 | |
C(4b) | (hp99/3≤HPEAK1<2/3hp99)and hp99≥15.0 and(HLA1+HLA2)/HCS<0.8 and HUL2<hp99/3 | UT1T2 | |
C(4c) | (hp99/3≤HPEAK1<2/3hp99)and hp99≥15.0 and(HLA1+HLA2)/HCS<0.8 and HUL2≥hp99/3 | OT1T2 | |
C(4d) | (hp99/3≤HPEAK1<2/3hp99)and hp99<15.0 and(HLA1+HLA2)/HCS<0.65 and HUL2<hp99/3 | UT1 | |
C(4e) | (hp99/3≤HPEAK1<2/3hp99)and hp99<15.0 and(HLA1+HLA2)/HCS<0.65 and HUL2≥hp99/3 | OT1 | |
C(4f) | (hp99/3≤HPEAK1<2/3hp99)and hp99<15.0 and(HLA1+HLA2)/HCS≥0.65 and HUL2<hp99/3 | UT1T2 | |
C(4g) | (hp99/3≤HPEAK1<2/3hp99)and hp99<15.0 and(HLA1+HLA2)/HCS≥0.65 and HUL2≥hp99/3 | OT1T2 | |
D(1a) | HPEAK3≥3.0 and(HLA1+HLA2+HLA3)/HCS≥0.80 | T1T2T3 | |
D(1b) | HPEAK3≥3.0 and(HLA1+HLA2+HLA3)/HCS<0.80 | OT1T2 | |
D(2a) | HPEAK3<3.0 and(HLA1+HLA2+HLA3)/HCS≥0.80 | T1T2T3 | |
D(2b) | HPEAK3<3.0 and(HLA1+HLA2+HLA3)/HCS<0.80 | OT1T2 |
表3
冠层垂直结构分类的混淆矩阵
类型 | 真实值 | 总数 | 用户精度/% | |||||
---|---|---|---|---|---|---|---|---|
(1)UT1 | (2)OT1 | (3)UT1T2 | (4)OT1T2 | (5)T1T3 | (6)T1T2 T3 | |||
(1)UT1 | 190 | 0 | 1 | 0 | 0 | 0 | 191 | 99.5 |
(2)OT1 | 5 | 534 | 0 | 2 | 0 | 2 | 543 | 98.3 |
(3)UT1T2 | 9 | 0 | 67 | 6 | 1 | 1 | 84 | 79.8 |
(4)OT1T2 | 17 | 5 | 6 | 164 | 1 | 0 | 193 | 85.0 |
(5)T1T3 | 0 | 3 | 0 | 0 | 21 | 1 | 25 | 84.0 |
(6)T1T2 T3 | 1 | 1 | 5 | 1 | 2 | 101 | 111 | 91.0 |
总数 | 222 | 543 | 79 | 173 | 25 | 105 | 1147 | |
生产者精度/% | 85.6 | 98.3 | 84.8 | 94.8 | 84.0 | 96.2 |
[1] |
Zimblea D A, Evansb D L, Carlson G C, et al. Characterizing vertical forest structure using small-footprint airborne LiDAR[J]. Remote Sensing of Environment, 2003,87(2-3):171-182.
doi: 10.1016/S0034-4257(03)00139-1 |
[2] |
Pommerening A, Sánchez Meador A J. Tamm review:Tree interactions between myth and reality[J]. Forest Ecology and Management, 2018,424:164-176.
doi: 10.1016/j.foreco.2018.04.051 |
[3] | 惠刚盈, 赵中华, 陈明辉. 描述森林结构的重要变量[J]. 温带林业研究, 2020,3(1):14-20. |
[4] | 方红亮. 森林垂直结构参数实测与遥感研究进展:以叶面积指数和聚集指数为例[J]. 科学通报, 2021,66(24):3141-3153. |
[5] |
Bourdier T, Cordonnier T, Kunstler G, et al. Tree size inequality reduces forest productivity:an analysis combining inventory data for ten european species and a light competition model[J]. Plos One, 2016,11(3):e0151852.
doi: 10.1371/journal.pone.0151852 |
[6] |
Krishna M P, Mohan M. Litter decomposition in forest ecosystems:a review[J]. Energy,Ecology and Environment, 2017,2(4):236-249.
doi: 10.1007/s40974-017-0064-9 |
[7] | 楼一恺, 范忆, 戴其林, 等. 天目山常绿落叶阔叶林群落垂直结构与群落整体物种多样性的关系[J]. 生态学报, 2021,41(21):8568-8577. |
[8] |
Hall S A, Burke I C, Box D O, Kaufmann M R, Stoker J M. Estimating stand structure using discrete-return lidar:an example from low density,fire prone ponderosa pine forests[J]. Forest Ecology and Management, 2005,208:189-209.
doi: 10.1016/j.foreco.2004.12.001 |
[9] |
Baker P J, Wilson J S. A quantitative technique for the identification of canopy stratification in tropical and temperate forests[J]. Forest Ecology and Management, 2000,127:77-86.
doi: 10.1016/S0378-1127(99)00118-8 |
[10] |
Bouvier M, Durrieu S, Fournier R A, et al. Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data[J]. Remote Sensing of Environment, 2015,156:322-334.
doi: 10.1016/j.rse.2014.10.004 |
[11] | 李增元, 刘清旺, 庞勇. 激光雷达森林参数反演研究进展[J]. 遥感学报, 2016,20(5):1138-1150. |
[12] | 刘浩, 张峥男, 曹林. 机载激光雷达森林垂直结构剖面参数的沿海平原人工林林分特征反演[J]. 遥感学报, 2018,22(5):872-888. |
[13] |
Morsdorf F, Mårell A, Koetz B, et al. Discrimination of vegetation strata in a multi-layered Mediterranean forest ecosystem using height and intensity information derived from airborne laser scanning[J]. Remote Sensing of Environment, 2010,114(7):1403-1415.
doi: 10.1016/j.rse.2010.01.023 |
[14] |
Leiterer R, Torabzadeh H, Furrer R, et al. Towards automated characterization of canopy layering in mixed temperate forests using airborne laser scanning[J]. Forests, 2015,6(11):4146-4167.
doi: 10.3390/f6114146 |
[15] |
Latifi H, Heurich M, Hartig F, et al. Estimating over- and understorey canopy density of temperate mixed stands by airborne LiDAR data[J]. Forestry, 2016,89(1):69-81.
doi: 10.1093/forestry/cpv032 |
[16] |
Kwon S, Jung H, Baek W, et al. Classification of forest vertical structure in south korea from aerial orthophoto and lidar data using an artificial neural network[J]. Applied Sciences, 2017,7(10):1046.
doi: 10.3390/app7101046 |
[17] |
Adnan S, Maltamo M, Coomes D A, et al. A simple approach to forest structure classification using airborne laser scanning that can be adopted across bioregions[J]. Forest Ecology and Management, 2019,433:111-121.
doi: 10.1016/j.foreco.2018.10.057 |
[18] |
Xu Zhaoshang, Zheng Guang, Moskal L M. Stratifying forest overstory for improving effective LAI estimation based on aerial imagery and discrete laser scanning data[J]. Remote Sensing, 2020,12(13):2126.
doi: 10.3390/rs12132126 |
[19] |
Jarron L R, Coops N C, MacKenzie W H, et al. Detection of sub-canopy forest structure using airborne LiDAR[J]. Remote Sensing of Environment, 2020,244:111770.
doi: 10.1016/j.rse.2020.111770 |
[20] | 骆期邦, 曾伟生, 贺东北 .等. 林业数表模型——理论、方法与实践[M]. 长沙: 湖南科学技术出版社, 2001. |
[21] |
Parker G G, Brown N J. Forest canopy stratification-is it useful?[J]. American Naturalist, 2000,155(4):473-484.
doi: 10.1086/303340 |
[22] | Neto S E N, Paula A D, Tagliaferre C, et al. Performance assessment of methodologies for vertical stratification in native forest[J]. Ciênc.Florest, 2018,28(4):1583-1591. |
[23] |
Morsdorf F, Kötz B, Meier E, et al. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction[J]. Remote Sensing of Environment, 2006,104(1):50-61.
doi: 10.1016/j.rse.2006.04.019 |
[24] |
Muss J D, Mladenoff D J, Townsend P A, et al. A pseudo-waveform technique to assess forest structure using discrete lidar data[J]. Remote Sensing of Environment, 2011,115(3):824-835.
doi: 10.1016/j.rse.2010.11.008 |
[1] | 唐佳俊, 柴宗政. 基于机载激光雷达和机器学习的林分平均胸径遥感估测[J]. 林草资源研究, 2024, 0(1): 56-64. |
[2] | 唐佳俊, 汪刚, 柴宗政. 基于机载激光雷达点云数据的马尾松单木材积估测[J]. 林草资源研究, 2023, 0(6): 105-112. |
[3] | 任晓琦, 侯鹏, 陈妍. 森林地上生物量遥感反演研究进展[J]. 林草资源研究, 2023, 0(6): 146-158. |
[4] | 张顺敏, 黄晓园, 刘俊泽, 陈蓉, 李翔. 大理市森林景观形态与热环境的动态研究[J]. 林草资源研究, 2023, 0(5): 122-132. |
[5] | 焦全军, 郑焰锋, 黄文江, 张兵, 张鹤译, 史宜梦, 吴发云, 付安民. 陆地生态系统碳监测卫星松材线虫病变色木识别指数研究[J]. 林业资源管理, 2023, 0(4): 123-131. |
[6] | 邹为民, 陈超, 黄蕾, 宋美萱, 李雪建, 杜华强. 地理加权回归模型结合卫星遥感的松阳县森林地上碳储量估算[J]. 林业资源管理, 2023, 0(4): 132-140. |
[7] | 刘鸿升, 欧阳文欣, 魏英杰, 谢亦秋, 李建军. 基于Sentinel-2B的油松冠层可燃物含水率反演研究[J]. 林业资源管理, 2023, 0(4): 141-149. |
[8] | 邢元军, 温坤剑, 郭晓妮, 宋亚斌, 胡中岳, 江腾宇, 贺紫荆. 基于Mask R-CNN的平原造林地区单木树冠分割[J]. 林业资源管理, 2023, 0(3): 115-120. |
[9] | 周梅, 李春干, 杨承伶, 李振. 无人机激光雷达人工林参数估测试验[J]. 林业资源管理, 2023, 0(3): 90-97. |
[10] | 张绘芳, 朱雅丽, 张景路, 高健, 地力夏提·包尔汉. 基于高分遥感数据的阿尔泰山乔木林地上生物量预测[J]. 林业资源管理, 2023, 0(2): 104-110. |
[11] | 王晓慧, 张会儒, 庞勇, 覃先林, 李海奎, 蒙诗栎, 余涛. 天然林保护工程区森林植被类型遥感监测[J]. 林业资源管理, 2023, 0(2): 96-103. |
[12] | 谢文春, 李强峰, 李艳春, 吴振山, 杨正凡. 基于面向对象的吉林一号遥感影像湿地植被群落分类[J]. 林业资源管理, 2023, 0(1): 141-152. |
[13] | 聂靖, 陆驰, 欧光龙, 胥辉. 基于Landsat8 OLI遥感因子的思茅松地上生物量二阶抽样估测[J]. 林业资源管理, 2022, 0(6): 68-75. |
[14] | 罗洪斌, 岳彩荣, 王宁. 基于干涉相位-相干幅度法和基线选择的森林冠层高度反演[J]. 林业资源管理, 2022, 0(4): 119-125. |
[15] | 秦琳, 孟先进, 张水花, 薛亚东, 刘新科, 邢鹏. 北京三号卫星数据在松材线虫病遥感监测中的应用评价[J]. 林业资源管理, 2022, 0(4): 126-133. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||