欢迎访问林草资源研究

林草资源研究 ›› 2023›› Issue (6): 146-158.doi: 10.13466/j.cnki.lczyyj.2023.06.018

• 研究进展 • 上一篇    

森林地上生物量遥感反演研究进展

任晓琦1,2(), 侯鹏1,2(), 陈妍2   

  1. 1.山东科技大学 测绘与空间信息学院,山东 青岛 266590
    2.生态环境部卫星环境应用中心,北京 100094
  • 收稿日期:2023-09-13 修回日期:2023-11-15 出版日期:2023-12-28 发布日期:2024-02-21
  • 通讯作者: 侯鹏,正高级工程师,博士,主要研究方向:生态评估与环境遥感等。Email:houpcy@163.com
  • 作者简介:任晓琦,硕士研究生,主要研究方向:生态遥感等。Email:renxiao_qiqi@163.com

Advances in Remote Sensing Retrieval of Forest Aboveground Biomass

REN Xiaoqi1,2(), HOU Peng1,2(), CHEN Yan2   

  1. 1. College of Geodesy and Geomatics,Shandong University of Science and Technology,Qingdao,Shandong 266590,China
    2. Satellite Application Center for Ecology and Environment,Ministry of Ecology and Environment,Beijing 100094,China
  • Received:2023-09-13 Revised:2023-11-15 Online:2023-12-28 Published:2024-02-21

摘要:

森林地上生物量是反映森林生态系统状况的关键性指标之一,对全球气候变化、以及我国实现碳达峰和碳中和目标具有重要意义。遥感技术快速发展并日益成熟,已成为大区域尺度森林地上生物量反演的主要技术手段。通过系统梳理国内外相关文献资料,从数据源和反演模型两方面对森林地上生物量遥感反演研究进展进行讨论:从数据源角度,阐述分析光学遥感数据、合成孔径雷达数据、激光雷达数据等3种数据源提供的有效信息、优势及局限;从反演模型角度,结合实际应用案例讨论分析多元回归模型、机器学习算法、机理模型等3种模型的特点及适用范围。在总结现阶段利用遥感手段反演森林地上生物量存在问题的基础上,分析探讨未来森林地上生物量遥感反演的方向和热点。

关键词: 森林地上生物量, 遥感数据, 多元回归模型, 机器学习, 机理模型

Abstract:

Forest aboveground biomass is one of the key indicators to reflect the status of forest ecosystem,which is of great significance to global climate change and China's carbon peak and carbon neutrality.With the rapid development and increasing maturity of remote sensing technology,it has become the main technical means for retrieving above-ground forest biomass in large areas.In this paper,the research progress of remote sensing inversion of forest aboveground biomass was discussed from two aspects through systematic review of relevant literatures at home and abroad.From the perspective of data source,it can be summarized as inversion methods of optical remote sensing data,synthetic aperture radar data and LiDARdata,and the effective information,advantages and limitations provided by each data source are expounded and analyzed.From the perspective of inversion model,it can be summarized as multiple regression model,machine learning algorithm and mechanism model,and the characteristics of different models are discussed and analyzed combined with practical application cases.Finally,this paper summarized the existing problems in the inversion of forest above-ground biomass by remote sensing,and prospected the direction and hotspots of forest above-ground biomass inversion by remote sensing in the future.

Key words: forest aboveground biomass, remote sensing data, multiple regression model, machine learning, mechanism model

中图分类号: