欢迎访问林草资源研究

林业资源管理 ›› 2019›› Issue (5): 145-149.doi: 10.13466/j.cnki.lyzygl.2019.05.022

• 研究简报 • 上一篇    下一篇

基于数学期望的森林稳定性评价——以浙江省江山市为例

应宝根1(), 廖文海2, 姚任图3,4, 葛宏立3,4()   

  1. 1. 浙江省公益林和国有林场管理总站,杭州 310020
    2. 江山市林业局,浙江 江山 324100
    3. 浙江农林大学 环境与资源学院,浙江 临安 311300
    4. 省部共建亚热带森林培育国家重点实验室,浙江 临安 311300
  • 收稿日期:2019-06-24 修回日期:2019-09-18 出版日期:2019-10-28 发布日期:2020-09-18
  • 通讯作者: 葛宏立
  • 作者简介:应宝根(1963-),男,浙江杭州人,高工,硕士,主要从事公益林建设与管理工作。Email: 183817987@qq.com
  • 基金资助:
    国家科技支撑计划团队任务“低效公益林更新改造和健康维持技术研究与示范”(2012BAD22B0503);江山市公益林建设成效评估(ZC2017ZFCG-024)

Forest Stability Evaluation Based on Mathematical Expectations—A Case Study in Jiangshan,Zhejiang Province

YING Baogen1(), LIAO Wenhai2, YAO Rentu3,4, GE Hongli3,4()   

  1. 1. Zhejiang Public Welfare Forest and State-owned Forest Farm Management Station,Hangzhou 310020,China
    2. Forestry Bureau of Jiangshan County,Jiangshan 324100,China
    3. School of Environmental and Resource Science,Zhejiang A&F University,Lin'an 311300,China
    4. State Key Laboratory of Subtropical Silviculture,Lin'an 311300,China
  • Received:2019-06-24 Revised:2019-09-18 Online:2019-10-28 Published:2020-09-18
  • Contact: GE Hongli

摘要:

森林稳定性是森林群落结构与功能的综合特征,决定了森林的生态功能。提出林分存续期数学期望和林木存续期数学期望两个定量指标,从一个新的角度对森林的稳定性进行衡量。林分形成后能够存在的期望年数称为林分存续期数学期望,林木进界后能够存活的期望年数称为林木存续期数学期望。利用2008年和2016年江山市乔木林固定样地数据,对该市林分存续期和林木存续期的数学期望分森林类别进行了研究,由此来评价江山市森林在当前的经营管理模式下的林分和林木稳定性。结果表明:1)在林分采伐枯损率>50%视为中断的情况下,公益林的林分存续期数学期望为41.46a,商品林的为14.16a;在林分采伐枯损率>50%,但仍满足乔木林标准视为不中断的情况下,公益林的林分存续期数学期望为95.64a,商品林的为34.89a。2)公益林的林木存续期数学期望为20.58a,商品林的为11.67a。无论林分存续期数学期望还是林木存续期数学期望,公益林的均显著大于商品林的,即公益林的稳定性大于商品林,符合实际情况,也符合经营预期,说明用林分存续期数学期望和林木存续期数学期望评价森林稳定性具有一定的可行性。

关键词: 森林稳定性, 森林类别, 林分存续期数学期望, 林木存续期数学期望, 固定样地

Abstract:

Forest stability is a comprehensive feature of forest community structure and function,which determines the ecological function of forest.Two quantitative indicators,namely mathematical expectation of stand duration and mathematical expectation of tree duration,were proposed to measure forest stability in this study from a new perspective.Mathematical expectation of stand duration is the expected number of years that stand can exist after growing into forests.The mathematical expectation of tree duration is the number of years that trees can survive after growing up to standard for starting measure the DBH(5cm).The mathematical expectation of the duration of stand and tree for different forest categories in Jiangshan City was studied based on the data of sample plots of arbor forests in 2008 and 2016.The stand and tree stability of Jiangshan forest under the current management model are quantitatively evaluated by two sets of mathematical expectations.The results show that:1) the mathematical expectation of the stand duration of non-commercial forest in Jiangshan City is 41.46 a and that of commercial forest is 14.16 a when the cutting loss rate of forest > 50% regarded as interruption.The mathematical expectation of the stand duration of non-commercial forest is 95.64 a and that of commercial forest 34.89 a,when the cutting loss rate of forest stands > 50% but the standard of arbor forest is maintained regarded as uninterrupted.2) the mathematical expectation of the tree survival period of non-commercial forest is 20.58 a and that of commercial forest is 11.67 a.Regardless of the mathematical expectation of stand duration or the mathematical expectation of tree survival period,the mathematical expectation of non-commercial forest is significantly greater than that of commercial forest,that is,the stability of non-commercial forest is greater than that of commercial forest,which accords with the actual situation and operational expectation.It shows that the method of evaluating forest stability by using mathematical expectation of stand duration and mathematical expectation of tree survival period is feasible.

Key words: forest stability, forest category, mathematical expectation of stand duration, mathematical expectation of tree survival period, permanent sample plot

中图分类号: