欢迎访问林草资源研究

林业资源管理 ›› 2010›› Issue (3): 104-109.

• 科学技术 • 上一篇    下一篇

基于CEBERS-WFI遥感数据的森林生物量估测方法研究

许等平1, 李晖1,2, 智长贵1, 韩爱惠1   

  1. 1.国家林业局调查规划设计院,北京 100714;
    2.北京林业大学 省部共建森林培育与保护教育部重点实验室,北京 10083
  • 收稿日期:2010-03-31 修回日期:2010-04-23 发布日期:2020-12-14
  • 作者简介:许等平(1976-),男,甘肃镇原人,工程师,主要从事森林资源监测及“3S”林业应用工作。
  • 基金资助:
    “十一五”国家科技支撑计划项目“森林资源监测技术研究”(2006BAD23B02)

Study on Forest Biomass Estimation Method Based on CEBERS-WFI Remote Sensing Data

XU Dengping1, LI Hui1,2, ZHI Changgui1, HAN Aihui1   

  1. 1. Academy of Forest Inventory and Planning, State Forestry Administration, Beijing 100714, China;
    2. The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
  • Received:2010-03-31 Revised:2010-04-23 Published:2020-12-14

摘要: 以中巴卫星CEBERS-WFI遥感数据为基础,结合东北三省的地理、气象因子及森林资源连续清查固定样地信息,构建BP人工神经网络森林生物量估测模型,对我国东北三省的森林生物量进行估测,并反演了森林生物量的空间分布图像。结果表明,基于CEBERS-WFI遥感数据的BP人工神经网络应用于森林生物量估测简单实用,是一种快捷、有效的估测方法。

关键词: BP人工神经网络, CEBERS-WFI, 森林生物量, 估测

Abstract: Based on CEBERS-WFI remote sensing data,combined with the geographical and weather factors and NFI fixed sample plot measurement data of the three northeastern provinces, BP artificial neural network model for estimation of forest biomass for China's three northeastern provinces was developed and the remote sensing data based spatial distribution forest biomass image produced.The results showed that CEBERS-WFI BP artificial neural network is a quick and effective method for forest biomass estimation.

Key words: BP artificial neural network, CEBERS-WFI, forest biomass, estimation

中图分类号: