欢迎访问林草资源研究

林业资源管理 ›› 2015›› Issue (2): 125-132.doi: 10.13466/j.cnki.lyzygl.2015.02.022

• 研究与检讨 • 上一篇    下一篇

森林地上生物量多模式遥感信息动态分析及建模框架

师君1, 田昕2, 闫敏2   

  1. 1.国家林业局调查规划设计院,北京 100714;
    2.中国林业科学研究院资源信息研究所,北京 100091
  • 修回日期:2015-03-16 出版日期:2015-04-28 发布日期:2021-01-12
  • 通讯作者: 田昕,副研究员,主要研究方向:林业遥感。
  • 作者简介:师君(1971-)男,甘肃白银人,工程师,主要研究方向:森林资源监测、碳汇计量及生态工程规划设计。Email:shijunl740@163.com

Framework of dynamic analysis and modelling forest above-ground biomass by multi-mode remote sensing information

SHI Jun1, TIANXin2, YAN Min2   

  1. 1. Academy of Forestry Inventory and Planning, State Forestry Administration,Beijing 100714 ,P. R. China;
    2. Research Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing ,100091 ,P. R. China
  • Revised:2015-03-16 Online:2015-04-28 Published:2021-01-12

摘要: 森林控制着全球碳循环的动态,而森林地上生物量是固碳能力的重要标志,是评估森林碳收支的重要参 数,是系统发挥其它生态功能的物质基础。基于任何单一的方法,如森林资源清查资料方法、遥感模型反演方 法、通量观测法以及生态模型方法等均无法高效地刻画森林地上生物量及其动态变化信息。基于此,提出改进 森林地上生物量估测精度的时空连续性的新思路和新方法,即基于已有的多模式遥感数据及产品、森林生态过 程时空动态知识和各种地面连续观测数据提取的时空动态特征,采用同化算法进行遥感信息动态建模,生成高 精度、时空连续、物理量一致的森林地上生物量及其动态变化产品。

关键词: 多模式遥感, 森林地上生物量, 动态分析及建模, 数据同化

Abstract: Forest dominates the global carbon cycle and forest above-ground biomas(ACB) has been the critica index for carbon seuestratio capaciy,the main parameler of cabhon budgel, he maleria basis for oher ecogical functions. However,any individual mehod such as fores-inventory -based mehod remooesensing-baned melhlod, lrobsovaron-baind method and clogicl-mooe mehod, canmon describ the forest AGB and its dynamic information eficienl.l In orler lo geneat uhe hih-prcision time-space-se-ries,physielcuanli sy nery forest AGB and is dynamic produces , this study proposes the new idea and methodology for improving the space-time series modeling forest AGB , that is , the framework of the remote sensing dynamic information model will be established by use of new -prototype and multi-mode remote sensing data and their products , by the knowledge of dynamic information of forest ecological process and the characteristics from various observation data ,and by data assimilation algorithm.

Key words: multi-mode remote sensing, forest above- ground biomass, dynamic analysis and modelling, data assimilation

中图分类号: