[1] |
Fang Jingyun, Yu Guirui, Liu Lingli, et al. Climate change,human impacts,and carbon sequestration in China[J]. Proceedings of the National Academy of Sciences, 2018,115(16):4015-4020.
|
[2] |
Nascimento H E M, Laurance W F. Total above-ground biomass in central Amazonian rainforests:a landscape-scale study[J]. Forest ecology and management, 2002,168(1-3):311-321.
|
[3] |
Nie Sheng, Wang Cheng, Zeng Hongcheng, et al. Above-ground biomass estimation using airborne discrete-return and full-waveform LiDAR data in a coniferous forest[J]. Ecological Indicators, 2017,78:221-228.
|
[4] |
刘茜, 杨乐, 柳钦火, 等. 森林地上生物量遥感反演方法综述[J]. 遥感学报, 2015,19(1):62-74.
|
[5] |
刘清旺, 李增元, 陈尔学, 等. 机载LIDAR点云数据估测单株木生物量[J]. 高技术通讯, 2010,7:765-770.
|
[6] |
洪奕丰, 张守攻, 陈伟, 等. 基于机载激光雷达的落叶松组分生物量反演[J]. 林业科学研究, 2019(5):12.
|
[7] |
Margolis H A, Nelson R F, Montesano P M, et al. Combining satellite lidar,airborne lidar,and ground plots to estimate the amount and distribution of above-ground biomass in the boreal forest of North America[J]. Canadian Journal of Forest Research, 2015,45(7):838-855.
|
[8] |
Muss J D, Mladenoff D J, Townsend P A. A pseudo-waveform technique to assess forest structure using discrete lidar data[J]. Remote Sensing of Environment, 2011,115(3):824-835.
|
[9] |
吴娇娇, 欧光龙, 舒清态. 基于BP神经网络模型思茅松天然林生物量遥感估测[J]. 中南林业科技大学学报, 2017,37(7):30-35.
|
[10] |
孙翊, 姜树海, 陈至灵. 人工神经网络在林业上的应用研究进展[J]. 世界林业研究, 2019,32(3):7-12.
|
[11] |
徐辉, 潘萍, 宁金魁, 等. 多元线性回归与神经网络模型在森林地上生物量遥感估测中的应用[J]. 东北林业大学学报, 2018,46(1):63-67.
|
[12] |
徐奇刚, 雷相东, 国红, 等. 基于多层感知机的长白落叶松人工林林分生物量模型[J]. 北京林业大学学报, 2019,41(5):97-107.
|
[13] |
Le Cun Y, Bengio Y, Hinton G. Deep learning[J]. nature, 2015,521(7553):436-444.
doi: 10.1038/nature14539
pmid: 26017442
|
[14] |
罗云建, 张小全, 王效科, 等. 华北落叶松人工林生物量及其分配模式[J]. 北京林业大学学报, 2009,6(1):13-18.
|
[15] |
白静. 油松人工林生长特征及其与林分结构关系研究[D]. 呼和浩特:内蒙古农业大学, 2008.
|
[16] |
吴俊民, 苏贵林, 刘成志, 等. 黑龙江省西部杨树人工林生物量的估算方法[J]. 林业科技, 2000(3):14-16.
|
[17] |
Wang Chuankuan. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006,222(1-3):9-16.
|
[18] |
贾炜玮, 于爱民. 樟子松人工林单木生物量模型研究[J]. 林业科技情报, 2008,40(2):1-2
|
[19] |
Hancock S, Armston J, Hofton M, et al. The GEDI simulator:a large-footprint waveform Lidar simulator for calibration and validation of spaceborne missions[J]. Earth and Space Science, 2019,6(2):294-310.
doi: 10.1029/2018EA000506
pmid: 31008149
|
[20] |
Chen J M, Pavlic G, Brown L, et al. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements[J]. Remote Sensing of Environment, 2002,80(1):165-184.
doi: 10.1016/S0034-4257(01)00300-5
|
[21] |
Richardson J J, Moskal L M, Kim S H. Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR[J]. Agricultural and Forest Meteorology, 2009,149(6-7):1152-1160.
doi: 10.1016/j.agrformet.2009.02.007
|
[22] |
Hyer E J, Goetz S J. Comparison and sensitivity analysis of instruments and radiometric methods for LAI estimation:assessments from a boreal forest site[J]. Agricultural and Forest Meteorology, 2004,122(3-4):157-174.
doi: 10.1016/j.agrformet.2003.09.013
|
[23] |
张志, 田昕, 陈尔学, 等. 森林地上生物量估测方法研究综述[J]. 北京林业大学学报, 2011,33(5):144-150.
|
[24] |
Goodfellow I, Bengio Y, Courville A. Deep learning[M]. Cambridge,MA:MIT press, 2016.
|