[1] |
IUFRO. International guidelines for forest monitoring[R]. Vienna:IUFRO World Series:Volume 5, 1994.
|
[2] |
IPCC. IPCC guidelines for national greenhouse gas inventory[R/OL]. [2021- 01- 05]. http://www.ipcc-nggip.iges.or.jp.
|
[3] |
FAO. Global forest resources assessment 2020:Guidelines and specifications[R]. Rome:FRA working paper 189, 2018.
|
[4] |
张雄清, 张建国, 段爱国. 基于单木水平和林分水平的杉木兼容性林分蓄积量模型[J]. 林业科学, 2014,50(1):82-87.
|
[5] |
曾伟生, 杨学云, 陈新云. 单木和林分水平一元和二元材积模型的预估精度对比[J]. 中南林业调查规划, 2017,36(4):1-6.
|
[6] |
Jagodziński A M, Dyderski M K, Gesikiewicz K, et al. Tree and stand level estimations of Abies alba Mill aboveground biomass[J]. Annals of Forest Science, 2019,76:56.
doi: 10.1007/s13595-019-0842-y
|
[7] |
中华人民共和国农林部. LY208-77立木材积表[S]. 北京: 中国标准出版社, 1977.
|
[8] |
Luo Yunjian, Wang Xiaoke, Ouyang Zhiyun, et al. A review of biomass equations for China's tree species[J]. Earth System Science Data, 2020,12(1):21-40.
doi: 10.5194/essd-12-21-2020
|
[9] |
国家林业局. LY/T 2260-2014,立木生物量模型及碳计量参数—油松[S]. 北京: 中国标准出版社, 2015.
|
[10] |
国家林业局. LY/T 2261-2014,立木生物量模型及碳计量参数—湿地松[S]. 北京: 中国标准出版社, 2015.
|
[11] |
国家林业局. LY/T 2262-2014,立木生物量模型及碳计量参数—云南松[S]. 北京: 中国标准出版社, 2015.
|
[12] |
国家林业局. LY/T 2263-2014,立木生物量模型及碳计量参数—马尾松[S]. 北京: 中国标准出版社, 2015.
|
[13] |
国家林业局. LY/T 2264-2014,立木生物量模型及碳计量参数—杉木[S]. 北京: 中国标准出版社, 2015.
|
[14] |
国家林业局. LY/T 2654-2016,立木生物量模型及碳计量参数—落叶松[S]. 北京: 中国标准出版社, 2017.
|
[15] |
国家林业局. LY/T 2655-2016,立木生物量模型及碳计量参数—云杉[S]. 北京: 中国标准出版社, 2017.
|
[16] |
国家林业局. LY/T 2656-2016,立木生物量模型及碳计量参数—冷杉[S]. 北京: 中国标准出版社, 2017.
|
[17] |
国家林业局. LY/T 2657-2016,立木生物量模型及碳计量参数—柳杉[S]. 北京: 中国标准出版社, 2017.
|
[18] |
国家林业局. LY/T 2658-2016,立木生物量模型及碳计量参数—栎树[S]. 北京: 中国标准出版社, 2017.
|
[19] |
国家林业局. LY/T 2659-2016,立木生物量模型及碳计量参数—桦树[S]. 北京: 中国标准出版社, 2017.
|
[20] |
国家林业局. LY/T 2660-2016,立木生物量模型及碳计量参数—木荷[S]. 北京: 中国标准出版社, 2017.
|
[21] |
国家林业局. LY/T 2661-2016,立木生物量模型及碳计量参数—枫香[S]. 北京: 中国标准出版社, 2017.
|
[22] |
Shiver B D, Brister G H. Tree and stand volume functions for Eucalyptus saligna[J]. Forest Ecology and Management, 1992,47:211-223.
doi: 10.1016/0378-1127(92)90275-E
|
[23] |
Næsset E. Stand volume functions for Picea abies in western Norway[J]. Scandinavian Journal of Forest Research, 1995,10:42-50.
doi: 10.1080/02827589509382866
|
[24] |
Næsset E, Tveite B. Stand volume functions for Picea abies in eastern,central and northern Norway[J]. Scandinavian Journal of Forest Research, 1999,14:164-174.
doi: 10.1080/02827589950152890
|
[25] |
Chamshama S A O, Mugasha A G, Zahabu E. Stand biomass and volume estimation for Miombo woodlands at Kitulangalo,Morogoro,Tanzania[J]. Southern African Forestry Journal, 2004,200:59-69.
doi: 10.1080/20702620.2004.10431761
|
[26] |
Castedo-Dorado F, Gómez-García E, Diéguez-Aranda U, et al. Aboveground stand-level biomass estimation:A comparison of two methods for major forest species in northwest spain[J]. Annals of Forest Science, 2012,69:735-746.
doi: 10.1007/s13595-012-0191-6
|
[27] |
Usoltsev V A, Shobairi S O R, Chasovskikh V P. Triple harmonization of transcontinental allometric of Picea spp.and Abies spp.forest stand biomass[J]. Ecology,Environment and Conservation, 2018,24(4):1966-1972.
|
[28] |
Jagodziński A M, Dyderski M K, Gesikiewicz K, et al. How do tree stand parameters affect young Scots pine biomass? —Allometric equations and biomass conversion and expansion factors[J]. Forest Ecology and Management, 2018,409:74-83.
doi: 10.1016/j.foreco.2017.11.001
|
[29] |
Jagodziński A M, Dyderski M K, Gesikiewicz K, et al. Tree and stand-level biomass estimation in a Larix decidua Mill.chronosequence[J]. Forests, 2018,9:587.
doi: 10.3390/f9100587
|
[30] |
Jagodziński A M, Dyderski M K, Gęsikiewicz K, et al. Effects of stand features on aboveground biomass and biomass conversion and expansion factors based on a Pinus sylvestris L.chronosequence in western Poland[J]. European Journal of Forest Research, 2019,138:673-683.
doi: 10.1007/s10342-019-01197-z
|
[31] |
Burt A, Calders K, Cuni-Sanchez A, et al. Assessment of bias in pan-tropical biomass predictions[J]. Frontiers in Forests and Global Change, 2020,3:12.
doi: 10.3389/ffgc.2020.00012
|
[32] |
Zeng Weisheng. Developing one-variable individual tree biomass models based on wood density for 34 tree species in China[J]. Forest Research:Open Access, 2018,7:1.
|
[33] |
方精云, 刘国华, 徐嵩龄. 我国森林植被的生物量和净生产量[J]. 生态学报, 1996,16(5):497-508.
|
[34] |
Fang Jingyun, Chen Anping, Peng Changhui, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001,292:2320-2322.
doi: 10.1126/science.1058629
|
[35] |
余松柏, 叶金盛, 王登峰, 等. 编制林分形高表估计林分蓄积量方法的研究[J]. 中南林业调查规划, 2005,24(3):5-9.
|
[36] |
侯振宏, 张小全, 徐德应, 等. 杉木人工林生物量和生产力研究[J]. 中国农学通报, 2009,25(5):97-103.
|
[37] |
王斌, 刘某承, 张彪. 基于森林资源清查资料的森林植被净生产量及其动态变化研究[J]. 林业资源管理, 2009(1):35-42.
|
[38] |
王艳婷, 李崇贵, 郝利军. 用岭估计估测以分类为前提的森林蓄积量[J]. 东北林业大学学报, 2014,42(9):39-42.
|
[39] |
Hou Yannan, Wu Huili, Zeng Weixian, et al. Conversion parameters for stand biomass estimation of four subtropical forests in southern China[C]//2016 International Conference on Environment,Climate Change and Sustainable Development. DEStech Publications Incorporated, 2017.
|
[40] |
Mei Guangyi, Sun Yujun, Saeed S. Models for predicting the biomass of Cunninghamia lanceolata trees and stands in southeastern China[J]. PLOS ONE, 2017,12(1):e0169747.
doi: 10.1371/journal.pone.0169747
|
[41] |
Zhao Miaomiao, Yang Jilin, Zhao Na, et al. Estimation of China's forest stand biomass carbon sequestration based on the continuous biomass expansion factor model and seven forest inventories from 1977 to 2013[J]. Forest Ecology and Management, 2019,448:528-534.
doi: 10.1016/j.foreco.2019.06.036
|
[42] |
Dong Lihu, Zhang Lianjun, Li Fengri. Evaluation of stand biomass estimation methods for major forest types in the eastern Da Xing'an Mountain,northeast China[J]. Forests, 2019,10:715.
doi: 10.3390/f10090715
|
[43] |
Soares P, Tome M. Biomass expansion factors for Eucalyptus globulus stands in Portugal[J]. Forest Systems, 2012,21(1):141-152.
doi: 10.5424/fs/2112211-12086
|
[44] |
李海奎, 雷渊才. 中国森林植被生物量和碳储量评估[M]. 北京: 中国林业出版社, 2010.
|
[45] |
曾伟生, 唐守正. 非线性模型对数回归的偏差校正及与加权回归的对比分析[J]. 林业科学研究, 2011,24(2):137-143.
|
[46] |
唐守正, 郎奎建, 李海奎. 统计和生物数学模型计算(ForStat教程)[M]. 北京: 科学出版社, 2008.
|
[47] |
Zeng Weisheng, Zhang Huiru, Tang Shouzheng. Using the dummy variable model approach to construct compatible single-tree biomass equations at different scales—a case study for Masson pine(Pinus massoniana)in southern China[J]. Canadian Journal of Forest Research, 2011,41(7):1547-1554.
doi: 10.1139/x11-068
|
[48] |
Zeng Weisheng. Using nonlinear mixed model and dummy variable model approaches to construct origin-based single tree biomass equations[J]. Trees-Structure and Function, 2015,29(1):275-283.
doi: 10.1007/s00468-014-1112-0
|
[49] |
曾伟生, 唐守正. 立木生物量模型的优度评价和精度分析[J]. 林业科学, 2011,47(11):106-113.
|
[50] |
国家质量监督检验检疫总局, 国家标准化管理委员会. GB/T 26424-2010,森林资源规划设计调查技术规程[S]. 北京: 中国标准出版社, 2011.
|
[51] |
曾伟生, 孙乡楠, 王六如, 等. 基于激光雷达数据估计林分蓄积量及平均高和断面积[J]. 林业资源管理, 2020(2):79-86.
|