欢迎访问林草资源研究

林业资源管理 ›› 2022›› Issue (2): 75-81.doi: 10.13466/j.cnki.lyzygl.2022.02.011

• 科学研究 • 上一篇    下一篇

大兴安岭火烧迹地遥感提取研究

郝帅1,2(), 王星1, 张秋良1,2, 王冰1,2(), 田原3   

  1. 1.内蒙古农业大学 林学院,呼和浩特 010019
    2.内蒙古大兴安岭森林生态系统国家野外科学观测研究站,内蒙古 根河 022350
    3.黄山学院 生命与环境科学学院,安徽 黄山 245041
  • 收稿日期:2022-01-15 修回日期:2022-02-23 出版日期:2022-04-28 发布日期:2022-06-13
  • 通讯作者: 王冰
  • 作者简介:郝帅(1992-),男,内蒙古巴彦淖尔人,实验师,研究方向:林业遥感、森林可持续经营。Email: alan@imau.edu.cn
  • 基金资助:
    内蒙古自然科学基金(2018MS03049);“十三五”国家重点研发计划“火烧及采伐迹地森林生态系统恢复和功能提升关键技术”(2017YFC0504003);黄山学院人才启动项目“树干直径微变化特征及其对环境因子的响应研究”(2020xkjq012)

Study on Remote Sensing Extractions of Burned Areas in Greater Khingan Mountains

HAO Shuai1,2(), WANG Xing1, ZHANG Qiuliang1,2, WANG Bing1,2(), TIAN Yuan3   

  1. 1. Forestry College,Inner Mongolia Agricultural University,Hohhot 010019,China
    2. Forest Ecosystem National Observation and Research Station of Greater Khingan Mountains,Genhe,Inner Mongolia 022350,China
    3. College of Life and Environmental Science,Huangshan University,Huangshan,Anhui 245041,China
  • Received:2022-01-15 Revised:2022-02-23 Online:2022-04-28 Published:2022-06-13
  • Contact: WANG Bing

摘要:

林火是森林生态系统的重要影响因子,遥感技术的发展为林火监测和损失估算提供了强有力的技术手段。以内蒙古根河市1987年、2003年和2015年火烧迹地为研究对象,基于Landsat遥感影像,对比分析NDVI,EVI,GEMI,BAI,NBR,dNBR,NDSWIR等7种常见遥感指数对火烧迹地的提取能力,从而筛选出适合大兴安岭火烧迹地提取的最佳遥感指数。通过对遥感指数和分离指数的对比分析,得出结论:1)经历林火干扰的植被,其光谱特征也相应改变,基于近红外波段的遥感指数可将火烧迹地与正常植被区分。2)dNBR为提取大兴安岭火烧迹地的最佳遥感指数,其提取精度在90%以上;其次为NBR,BAI,NDSWIR;NDVI和EVI最差。 3)基于dNBR提取的3个不同年份火烧迹地面积分别为3 145.23,197 726.67,48.06hm2

关键词: 大兴安岭, 火烧迹地, Landsat, 遥感指数, 分离指数

Abstract:

Fire is an important influencing factor of forest ecosystem. The development of remote sensing technology provides a powerful technical means for forest fire monitoring and loss estimation. Based on Landsat images,the extraction abilities of seven common remote sensing indexes (NDVI,EVI,GEMI,BAI,NBR,dNBR,NDSWIR) for the burned area in 1987,2003 and 2015 of Greater Khingan Mountains were compared and analyzed,so as to select the best remote sensing index suitable for the extraction of burning areas in Greater Khingan Mountains. Through the comparative analysis of the remote sensing indexes and the separation index,the following results were obtained:(1) after the fire,the spectral characteristics of vegetation changed correspondingly. The remote sensing index based on near-infrared band can distinguish the burned area from the normal vegetation. (2) The dNBR was the best remote sensing index for extracting the burned area in Greater Khingan Mountains,followed by the NBR,BAI and NDSWIR,the NDVI and EVI were the worst. (3) The areas of three burned areas based on dNBR were 3 145.23,197 726.67 and 48.06 hm2,respectively.

Key words: Greater Khingan Mountains, burned area, landsat, remote sensing index, separation index

中图分类号: