[1] |
戴鹏钦, 丁丽霞, 刘丽娟, 等. 基于FCN的无人机可见光影像树种分类[J]. 激光与光电子学进展, 2020, 57(10):36-45.
|
[2] |
欧阳光, 荆林海, 阎世杰, 等. 基于卷积神经网络的高分遥感影像单木树种分类[J]. 激光与光电子学进展, 2021, 58(2):349-362.
|
[3] |
Xi Yanbiao, Tian Jia, Jiang Hailing, et al. Mapping tree species in natural and planted forests using Sentinel-2 images[J]. Remote Sensing Letters, 2022, 13(6):544-555.
doi: 10.1080/2150704X.2022.2051636
|
[4] |
He Zhi, He Dan. Bilinear squeeze-and-excitation network for fine-grained classification of tree species[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(7):1139-1143.
doi: 10.1109/LGRS.2020.2994952
|
[5] |
龚健雅, 宦麟茜, 郑先伟. 影像解译中的深度学习可解释性分析方法[J]. 测绘学报, 2022, 51(6):873-884.
|
[6] |
滕文秀, 王妮, 施慧慧, 等. 结合面向对象和深度特征的高分影像树种分类[J]. 测绘通报, 2019(4):38-42.
|
[7] |
Deur M, Gasparovic M, Balenovici. An evaluation of Pixel-and object-based tree species classification in mixed deciduous forests using pansharpened very high spatial resolution satellite imagery[J]. Remote Sensing, 2021, 13(10):1868.
doi: 10.3390/rs13101868
|
[8] |
Schieffr F, Kattenborn T, Frick A, et al. Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170:205-215.
doi: 10.1016/j.isprsjprs.2020.10.015
|
[9] |
He Xin, Zhou Yong, Zhao Jiaqi, et al. Swin transformer embedding UNet for remote sensing image semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-15.
|
[10] |
滕文秀, 温小荣, 王妮, 等. 基于深度迁移学习的无人机高分影像树种分类与制图[J]. 激光与光电子学进展, 2019, 56(7):277-286.
|
[11] |
Qin Haiming, Zhou Weiqi, Yao Yang, et al. Individual tree segmentation and tree species classification in subtropical broadleaf forests using UAV-based LiDAR,hyperspectral,and ultrahigh-resolution RGB data[J]. Remote Sensing of Environment, 2022, 280:113143.
doi: 10.1016/j.rse.2022.113143
|
[12] |
夏爱梅, 聂乐群. 安徽植被带的划分[J]. 武汉植物学研究, 2004(6):523-528.
|
[13] |
Kawamura K, Asai H, Yasuda T, et al. Discriminating crops/weeds in an upland rice field from UAV images with the SLIC-RF algorithm[J]. Plant Production Science, 2021, 24(2):198-215.
doi: 10.1080/1343943X.2020.1829490
|
[14] |
Homan D, Du Preez J A. Automated feature-specific tree species identification from natural images using deep semi-supervised learning[J]. Ecological Informatics, 2021, 66:101475.
doi: 10.1016/j.ecoinf.2021.101475
|
[15] |
赵霖, 张晓丽, 吴艳双, 等. 面向机载高光谱数据的3D-CNN亚热带森林树种分类[J]. 林业科学, 2020, 56(11):97-107.
|
[16] |
Zhang Cheng, Jiang Wanshou, Zhang Yuan, et al. Transformer and CNN hybrid deep neural network for semantic segmentation of Very-High-Resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-20.
|
[17] |
Huang Xin, Dong Mengjie, Li Jiayi, et al. A 3-D-Swin Transformer-Based hierarchical contrastive learning method for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-15.
|
[18] |
Tu Jingzhi, Mei Gang, Ma Zhengjing, et al. SWCGAN:Generative adversarial network combining swin transformer and CNN for remote sensing image Super-Resolution[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15:5662-5673.
doi: 10.1109/JSTARS.2022.3190322
|
[19] |
Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM:Visual explanations from deep networks via Gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2):336-359.
doi: 10.1007/s11263-019-01228-7
|
[20] |
Su Hongjun, Yao Wenjing, Wu Zhaoyu, et al. Kernel low-rank representation with elastic net for China coastal wetland land cover classification using GF-5 hyperspectral imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171:238-252.
doi: 10.1016/j.isprsjprs.2020.11.018
|