欢迎访问林草资源研究

林业资源管理 ›› 2023›› Issue (3): 90-97.doi: 10.13466/j.cnki.lyzygl.2023.03.012

• 科学研究 • 上一篇    下一篇

无人机激光雷达人工林参数估测试验

周梅1(), 李春干2(), 杨承伶3, 李振3   

  1. 1.广西大学 计算机与电子信息学院,南宁 530004
    2.广西大学 林学院,南宁 530004
    3.广西林业勘测设计院,南宁 530011
  • 收稿日期:2023-04-28 修回日期:2023-05-19 出版日期:2023-06-28 发布日期:2023-08-09
  • 通讯作者: 李春干(1962-),男,广西横县人,教授,博士,主要从事林业遥感与空间信息、森林资源监测与管理研究。Email: gxali@126.com
  • 作者简介:周梅(1972-),女,广西宾阳人,实验师,主要从事林业遥感与森林资源监测研究。Email: zhoumei_gxdx@163.com
  • 基金资助:
    广西林业科技推广示范项目“桉树人工林全林分生长无人机精准快速监测与调控技术推广与示范”(GL2020KT02);广西壮族自治区林业勘测设计院科研业务费专项“无人机森林调查监测”(GXLKYKJ202201)

Experiments on Estimating Planted Forest Inventory Attributes Based on UAV-LiDAR Data

ZHOU Mei1(), LI Chungan2(), YANG Chengling3, LI Zhen3   

  1. 1. School of Computer,Electronic and Information in Guangxi University,Nanning 530004,China
    2. Forestry College of Guangxi University,Nanning 530004,China
    3. Guangxi Forest Inventory and Planning Institute,Nanning 530011,China
  • Received:2023-04-28 Revised:2023-05-19 Online:2023-06-28 Published:2023-08-09

摘要:

为探讨小区域森林资源调查监测中先进、可靠和可行的技术路径,对无人机激光雷达(UAV-LiDAR)森林参数估测和制图进行试验。采用13个刻画森林冠层三维结构、具有明确森林计测学和生态学解释意义的UAV-LiDAR变量,通过有规则的穷举法进行变量组合,得到86个森林参数估测模型式,每个模型式含2~5个变量;采用样地数据对全部模型式进行拟合和检验,得到6个森林参数估测优选模型。结果表明:松树、桉树人工林平均高、断面积和蓄积量估测模型的决定系数(R2)为0.616~0.853,相对均方根误差(rRMSE)为10.85%~18.79%,平均预报误差(MPE)为3.80%~9.72%。无人机激光雷达可实现森林参数的精确估测和制图,为小区域森林资源调查提供了全新技术手段,并且有效克服了传统地面调查存在的诸多问题。但是,在无人机激光雷达森林资源调查应用中,为进一步提高精度、降低调查成本,仍有很多技术问题需要加强研究。

关键词: 森林资源, 林分调查因子, 估测, 模型, 遥感

Abstract:

To explore advanced,reliable,and feasible technical schemes for small-scale forest resource inventory and monitoring,unmanned aerial vehicle-based LiDAR (UAV-LiDAR) was tested for estimating and mapping forest inventory attributes.Thirteen UAV-LiDAR-derived metrics,which depict the three-dimensional structural aspects of the forest canopy and have clear forest mensuration and ecology significance,were used to construct 86 multiplicative power formulations consisting of 2~5 predictors for forest inventory attribute estimation by using a rule-based exhaustive combination.All the formulations were calibrated and validated using the sample plot data,and six optimal models were achieved.The results indicated that the coefficients of determination (R2) of the mean stand height,basal area,and volume estimation for the pine and eucalyptus planted forests were 0.616~0.853,the relative root mean squared errors (rRMSE) were 10.85%~18.79%,and the mean predictive errors (MPE) were 3.80%~9.72%.With its ability to accurately estimate and map forest attributes,UAV-LiDAR provides an innovative technological tool for small-scale forest resource inventory,and effectively overcomes many of the problems of conventional field measurements.However,there are still numerous technical issues that need to be further investigated in the application of UAV-LiDAR to forest resource inventory to improve accuracy and reduce inventory costs.

Key words: forest resources, stand factor, estimation, model, remote sensing

中图分类号: