[1] |
Næsset E T. Gobakken J, Holmgren H, et al. Laser scanning of forest resources:The Nordic experience[J]. Scandinavian Journal of Forest Research, 2004, 19(6):482-499.
doi: 10.1080/02827580410019553
|
[2] |
White J C, Tompalski P, Vastaranta M, et al. A model development and application guide for generating an enhanced forest inventory using airborne laser scanning data and an area-based approach[R]. Victoria: Canadian Wood Fibre Centre, 2017.
|
[3] |
李春干, 李振. 机载激光雷达大区域亚热带森林参数估测的普适性模型式[J]. 林业科学, 2021, 57(10):23-35.
|
[4] |
代华兵, 李春干, 庞勇, 等. 基于天空地一体化森林资源调查的小班因子设置与信息获取方法[J]. 林业资源管理, 2021(2):180-188.
|
[5] |
李春干, 代华兵. 中国森林资源调查:历史、现状与趋势[J]. 世界林业研究, 2021, 34(6):72-80.
|
[6] |
Sankey T, Donager J, McVay J, et al. UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA[J]. Remote Sensing of Environment, 2017, 195:30-43.
doi: 10.1016/j.rse.2017.04.007
|
[7] |
Liu Kun, Shen Xin, Cao Lin, et al. Estimating forest structural attri-butes using UAV-LiDAR data in Ginkgo plantations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146:465-482.
doi: 10.1016/j.isprsjprs.2018.11.001
|
[8] |
Cao Lin, Liu Kun, Shen Xin, et al. Estimation of forest structural parameters using UAV-LiDAR data and a process-based model in Ginkgo planted forests[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(11):4175-4190.
doi: 10.1109/JSTARS.2019.2918572
|
[9] |
D'Oliveira M V N, Broadbent E N, Oliveira L C, et al. Aboveground biomass estimation in Amazonian Tropical Forests:A comparison of aircraft- and gatorEye UAV-borne LiDAR data in the chico mendes extractive reserve in Acre,Brazil[J]. Remote Sensing, 2020, 12:1754.
doi: 10.3390/rs12111754
|
[10] |
Corte A P D, de Vasconcello B N, Rex F E, et al. Applying high-resolution UAV-LiDAR and quantitative structure modelling for estimating tree attributes in a crop-livestock-forest system[J]. Land, 2022, 11:507.
doi: 10.3390/land11040507
|
[11] |
Xu Dandan, Wang Haobin, Xu Weixin, et al. LiDAR applications to estimate forest biomass at individual tree scale:Opportunities,challenges and future perspectives[J]. Forests, 2021, 12(5):550.
doi: 10.3390/f12050550
|
[12] |
Corte A P D, Souza D V, Rex F E, et al. Forest inventory with high-density UAV-Lidar:Machine learning approaches for predicting individual tree attributes[J]. Computers and Electronics in Agriculture, 2020, 179:105815.
doi: 10.1016/j.compag.2020.105815
|
[13] |
Cao Lin, Liu Kai, Shen Xin, et al. Estimation of forest structural parameters using UAV-LiDAR data and a process-based model in Ginkgo planted forests[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(11):4175-4189.
doi: 10.1109/JSTARS.2019.2918572
|
[14] |
Peng Xi, Zhao Anjiu, Chen Yongfu, et al. Comparison of modeling algorithms for forest canopy structures based on UAV-LiDAR:A case study in tropical china[J]. Forests, 2020, 11:1324.
doi: 10.3390/f11121324
|
[15] |
Neuville R Bates J S, Jonard F. Estimating forest structure from UAV-mounted LiDAR point cloud using machine learning[J]. Remote Sensing, 2021, 13:352.
doi: 10.3390/rs13030352
|
[16] |
Næset E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data[J]. Remote Sensing of Environment, 2002, 80(1):88-99.
doi: 10.1016/S0034-4257(01)00290-5
|
[17] |
周梅, 王新华, 李春干, 等. 不同样地面积对人工林林分参数的影响[J]. 西部林业科学, 2018, 47(1):110-116.
|
[18] |
Li Chungan, Lin Xin, Dai Huabing, et al. Effects of plot size on airborne LiDAR-derived metrics and predicted model performances of subtropical planted forest attributes[J]. Forests, 2022, 13:2124.
doi: 10.3390/f13122124
|
[19] |
Li Chungan, Chen Zhongchao, Zhou Xiangbei, et al. Generalized models for subtropical forest inventory attribute estimations using a rule-based exhaustive combination approach with airborne LiDAR-derived metrics[J]. Giscience & Rremote Sensing, 2023, 60(1):2194601.
|
[20] |
Ferster C J, Coops N C, Trofymow J A. Aboveground large tree mass estimation in a coastal forest in British Columbia using plot-level metrics and individual tree detection from lidar[J]. Canadian Journal of Remote Sensing, 2009, 35(3):270-275.
doi: 10.5589/m09-014
|
[21] |
Hall S A, Burke I C, Box D O, et al. Estimating stand structure using discrete-return lidar:An example from low density,fire prone ponderosa pine forests[J]. Forest Ecology and Management, 2005, 208(1):189-209.
doi: 10.1016/j.foreco.2004.12.001
|
[22] |
曾伟生, 唐守正. 立木生物量方程的优度评价和精度分析[J]. 林业科学, 2011, 47(11):106-113.
|
[23] |
Coops N C, Tompalski P, Goodbody T R H, et al. Modelling lidar-derived estimates of forest attributes over space and time:A review of approaches and future trends[J]. Remote Sensing of Environment, 2021, 260:112477.
doi: 10.1016/j.rse.2021.112477
|
[24] |
Gobakken T, Næsset E. Assessing effects of laser point density,ground sampling intensity,and field sample plot size on biophysical stand properties derived from airborne laser scanner data[J]. Canadian Journal of Forest Research, 2008, 38:1095-1109.
doi: 10.1139/X07-219
|
[25] |
余铸, 李春干, 苏凯. 等. 基于垂直结构分类的机载激光雷达森林参数估测[J/OL]. 桂林理工大学学报.(2022-05-06)[2023-05-16]. http://kns.cnki.net/kcms/detail/45.1375.n.20220429.1213.002.html.
|
[26] |
曾伟生, 孙乡楠, 王六如, 等. 基于机载激光雷达数据的森林蓄积量模型研建[J]. 林业科学, 2021, 57(2):31-38.
|
[27] |
Liu Hao, Cao Lin, She Guanghui, et al. Extrapolation assessment for forest structural parameters in planted Forests of southern China by UAV-LiDAR samples and multispectral satellite imagery[J]. Remote Sensing, 2022, 14(11):2677.
doi: 10.3390/rs14112677
|