[1] |
Mao Fangjie, Zhou Guomo, Du Haqiang, et al. Forest biomass carbon sinks in East Asia,with special reference to the relative contributions of forest expansion and forest growth[J]. Global Change Biology, 2014, 20(6):2019-2030.
doi: 10.1111/gcb.12512
|
[2] |
刘腾艳, 毛方杰, 李雪建, 等. 浙江省竹林地上碳储量的时空动态模拟及影响因素[J]. 应用生态学报, 2019, 30(5):1743-1753.
doi: 10.13287/j.1001-9332.201905.035
|
[3] |
Zhang Meng, Du Huaqiang, Zhou Guomo, et al. Estimating forest aboveground carbon storage in Hang-Jia-Hu using landsat TM/OLI data and random forest model[J]. Forests, 2019, 10(11):1004.
doi: 10.3390/f10111004
|
[4] |
Campbell M J, Dennison P E, Kerr K L, et al. Scaled biomass estimation in woodland ecosystems:Testing the individual and combined capacities of satellite multispectral and Lidar data[J]. Remote Sensing of Environment, 2021, 262:112511.
doi: 10.1016/j.rse.2021.112511
|
[5] |
Chang Zhongbing, Hobeichi S, Wang Yingping, et al. New forest aboveground biomass maps of China integrating multiple datasets[J]. Remote Sensing, 2021, 13(15):2892.
doi: 10.3390/rs13152892
|
[6] |
陈庆, 郑征, 冯志立, 等. 云南普洱地区思茅松林生物量及碳储量研究[J]. 云南大学学报:自然科学版, 2014, 36(3):439-445.
|
[7] |
刘茜, 杨乐, 柳钦火, 等. 森林地上生物量遥感反演方法综述[J]. 遥感学报, 2015, 19(1):62-74.
|
[8] |
韩雪莲, 张加龙, 刘灵, 等. 基于遥感特征变量的高山松碳储量抽样估算[J]. 西南林业大学学报:自然科学版, 2023, 43(6):1-9.
|
[9] |
Du Huaqiang, Zhou Guomo, Ge Hongli, et al. Satellite-based carbon stock estimation for bamboo forest with a non-linear partial least square regression technique[J]. International Journal of Remote Sensing, 2012, 33(6):1917-1933.
doi: 10.1080/01431161.2011.603379
|
[10] |
戚玉娇, 李凤日. 基于KNN方法的大兴安岭地区森林地上碳储量遥感估算[J]. 林业科学, 2015, 51(5):46-55.
|
[11] |
张博, 欧光龙, 孙雪莲, 等. 空间效应及其回归模型在林业中的应用[J]. 西南林业大学学报, 2016, 36(3):144-152.
|
[12] |
邱新彩, 郑冬梅, 王海宾, 等. 结合地统计学与Landsat 8影像的乔木林地上碳储量估算[J]. 中南林业科技大学学报, 2020, 40(11):138-146.
|
[13] |
Wang Jingyi, Du Huaqiang, Li Xuejian, et al. Remote sensing estimation of bamboo forest aboveground biomass based on geographically weighted regression[J]. Remote Sensing, 2021, 13(15):2962.
doi: 10.3390/rs13152962
|
[14] |
王海宾, 侯瑞萍, 郑冬梅, 等. 基于地理加权回归模型的亚热带地区乔木林生物量估算[J]. 农业机械学报, 2018, 49(6):184-190.
|
[15] |
叶森土, 金超, 吴初平, 等. 浙江松阳县生态公益林群落分类排序及优势种种间关联分析[J]. 浙江农林大学学报, 2020, 37(4):693-701.
|
[16] |
Bright B C, Hudak A T, Kennedy R E, et al. Examining post-fire vegetation recovery with andsat time series analysis in three Western North American forest types[J]. Fire Ecology, 2019, 15(1):8.
doi: 10.1186/s42408-018-0021-9
|
[17] |
周蓉, 赵天忠, 吴发云. 基于Landsat 8遥感影像的地上生物量模型反演研究[J]. 西北林学院学报, 2022, 37(2):186-192.
|
[18] |
郭含茹, 张茂震, 徐丽华, 等. 基于地理加权回归的区域森林碳储量估计[J]. 浙江农林大学学报, 2015, 32(4):497-508.
|
[19] |
刘伟, 潘永柱, 徐肇友, 等. 百山祖国家公园公益林碳储量及分配特征[J]. 生态学杂志, 2021, 40(1):1-10.
|
[20] |
邢晓语, 杨秀春, 徐斌, 等. 基于随机森林算法的草原地上生物量遥感估算方法研究[J]. 地球信息科学学报, 2021, 23(7):1312-1324.
doi: 10.12082/dqxxkx.2021.200605
|
[21] |
McFeeters S K. The use of the Normalized Difference Water Index(NDWI)in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432.
doi: 10.1080/01431169608948714
|
[22] |
廖瑶, 李雪, 刘芸, 等. 基于植被指数的高分一号遥感影像火烧迹地提取评价[J]. 自然灾害学报, 2021, 30(5):199-206.
|
[23] |
Haralick R M. Statistical and structural approaches to texture[J]. Proceedings of the IEEE, 1979, 67(5):786-804.
doi: 10.1109/PROC.1979.11328
|
[24] |
Dong Luofan, Du Huaqiang, Han Ning, et al. Application of convolutional neural network on Lei Bamboo Above-Ground-Biomass(AGB) estimation using Worldview-2[J]. Remote Sensing, 2020, 12(6):958.
doi: 10.3390/rs12060958
|
[25] |
Wang Nan, Sun Ming, Ye Junhong, et al. Spatial downscaling of forest above-ground biomass distribution patterns based on Landsat 8 OLI images and a multiscale geographically weighted regression algorithm[J]. Forests, 2023, 14(3):526.
doi: 10.3390/f14030526
|
[26] |
孙钰森, 王维芳, 李国春. 基于地理加权回归克里格模型的帽儿山地区森林碳储量空间分布[J]. 应用生态学报, 2019, 30(5):1642-1650.
doi: 10.13287/j.1001-9332.201905.024
|
[27] |
闾妍宇, 李超, 欧光龙, 等. 基于地理加权回归模型的思茅松生物量遥感估测[J]. 林业资源管理, 2017,(1):82-90.
|
[28] |
刘畅, 李凤日, 贾炜玮, 等. 基于局域统计量的黑龙江省多尺度森林碳储量空间分布变化[J]. 应用生态学报, 2014, 25(9):2493-2500.
|
[29] |
卢宾宾, 葛咏, 秦昆, 等. 地理加权回归分析技术综述[J]. 武汉大学学报:信息科学版, 2020, 45(9):1356-1366.
|
[30] |
Zhang Wei, Liu Dan, Zheng Shengjie, et al. Regional precipitation model based on geographically and temporally weighted regression kriging[J]. Remote Sensing, 2020, 12(16):2547.
doi: 10.3390/rs12162547
|
[31] |
Chen Huafeng, Qin Zihao, Zhai Deli, et al. Mapping forest aboveground biomass with MODIS and Fengyun-3C VIRR imageries in Yunnan province,Southwest China using Linear regression,K-Nearest neighbor and random forest[J]. Remote Sensing, 2022, 14(21):5456.
doi: 10.3390/rs14215456
|
[32] |
Zhang Xiao, Liu Liangyun, Chen Xidong, et al. Fine land-cover mapping in China using Landsat datacube and an operational SPECLib-based approach[J]. Remote Sensing, 2019, 11(9):1056.
doi: 10.3390/rs11091056
|
[33] |
Hu Xisheng, Zhang Lanyi, Ye Limin, et al. Locating spatial variation in the association between road network and forest biomass carbon accumulation[J]. Ecological Indicators, 2017, 73:214-223.
doi: 10.1016/j.ecolind.2016.09.042
|
[34] |
Cao Lin, Coops N C, Sun Yuan, et al. Estimating canopy structure and biomass in bamboo forests using airborne LiDAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 148:114-129.
doi: 10.1016/j.isprsjprs.2018.12.006
|
[35] |
Zhang Bo, Li Xuejian, Du Huaqiang, et al. Estimation of urban forest characteristic parameters using UAV-Lidar coupled with canopy volume[J]. Remote Sensing, 2022, 14(24):6375.
doi: 10.3390/rs14246375
|