[1] |
中国气象局气候变化中心. 2021年中国温室气体公报[R/OL].(2023-01-09) [2023-05-21]. http://www.cma.gov.cn/zfxxgk/gknr/qxbg/202301/P020230120308959927675.pdf.
|
[2] |
Nunes L J, Meireles C I, Pinto Gomes C J, et al. Forest contribution to climate change mitigation:Management oriented to carbon capture and storage[J]. Climate, 2020, 8(2):21.
doi: 10.3390/cli8020021
|
[3] |
朴世龙, 岳超, 丁金枝, 等. 试论陆地生态系统碳汇在“碳中和”目标中的作用[J]. 中国科学:地球科学, 2022, 52(7):1419-1426.
|
[4] |
国家林业和草原局. 中国森林资源报告(2014—2018)[M]. 北京: 中国林业出版社, 2019:26-28.
|
[5] |
臧颢, 黄锦程, 刘洪生, 等. 杉木人工林碳汇木材多功能经营的最优轮伐期[J]. 北京林业大学学报, 2022, 44(10):120-128.
|
[6] |
Dong Lingbo, Lu Wei, Liu Zhaogang. Determining the optimal rotations of larch plantations when multiple carbon pools and wood pro-ducts are valued[J]. Forest Ecology and Management, 2020, 474:118356.
doi: 10.1016/j.foreco.2020.118356
|
[7] |
朱玮强, 顾蕾. 碳汇目标下森林经营决策——以江西省杉木林为例[J]. 林业资源管理, 2017(3):41-45.
|
[8] |
Assmuth A, Tahvonen O. Optimal carbon storage in even and uneven-aged forestry[J]. Forest Policy and Economics, 2018, 87:93-100.
doi: 10.1016/j.forpol.2017.09.004
|
[9] |
Rørstad P K. Payment for CO2 sequestration affects the Faustmann rotation period in Norway more than albedo payment does[J]. Ecological Economics, 2022, 199:107492.
doi: 10.1016/j.ecolecon.2022.107492
|
[10] |
黄宰胜, 陈钦. 基于造林成本法的林业碳汇成本收益影响因素分析[J]. 资源科学, 2016, 38(3):485-492.
doi: 10.18402/resci.2016.03.11
|
[11] |
沈月琴, 王枫, 张耀启, 等. 中国南方杉木森林碳汇供给的经济分析[J]. 林业科学, 2013, 49(9):140-147.
|
[12] |
林卓, 吴承祯, 洪伟, 等. 杉木人工林碳汇木材复合经济收益分析及最优轮伐期确定——基于时间序列预测模型[J]. 林业科学, 2016, 52(10):134-145.
|
[13] |
West T A, Wilson C, Vrachioli M, et al. Carbon payments for extended rotations in forest plantations:Conflicting insights from a theoretical model[J]. Ecological Economics, 2019, 163:70-76.
doi: 10.1016/j.ecolecon.2019.05.010
|
[14] |
Lindner M, Maroschek M, Netherer S, et al. Climate change impacts,adaptive capacity,and vulnerability of European forest ecosystems[J]. Forest Ecology and Management, 2010, 259(4):698-709.
doi: 10.1016/j.foreco.2009.09.023
|
[15] |
张会儒, 雷相东, 李凤日. 中国森林经理学研究进展与展望[J]. 林业科学, 2020, 56(9):130-142.
|
[16] |
郭伊利, 李书恒, 王嘉川, 等. 芦芽山华北落叶松早晚材径向生长对气候变化响应的分离效应[J]. 干旱区研究, 2022, 39(5):1449-1463.
|
[17] |
LY/T 2654—2016,立木生物量模型及碳计量参数——落叶松[S].
|
[18] |
何潇, 雷相东, 段光爽, 等. 气候变化对落叶松人工林生物量生长的影响模拟[J]. 南京林业大学学报:自然科学版, 2023, 47(3):120-128.
|
[19] |
刘琪璟, 孟胜旺, 周华, 等. 中国立木材积表[M]. 北京: 中国林业出版社, 2017.
|
[20] |
Wang Tongli. ClimateAP:A interactive platform for visualization and data access[DB/OL].(2017-12-10) [2023-05-21]. https://climateap.net/.
|
[21] |
李文博, 吕振刚, 黄选瑞, 等. 塞罕坝华北落叶松人工林生产力及其空间分布预测[J]. 自然资源学报, 2019, 34(7):1365-1375.
doi: 10.31497/zrzyxb.20190702
|
[22] |
高利国. 隆化县国有林场华北落叶松人工林生长规律[D]. 保定: 河北农业大学, 2017.
|
[23] |
董灵波, 蔺雪莹, 张一帆, 等. 兼顾碳汇和木材生产的长白落叶松人工林最优轮伐期[J]. 林业科学, 2022, 58(5):18-30.
|
[24] |
Zengin H, ünal M E. Analyzing the effect of carbon prices on wood production and harvest scheduling in a managed forest in Turkey[J]. Forest Policy and Economics, 2019, 103:28-35.
doi: 10.1016/j.forpol.2017.10.017
|
[25] |
Zhou Wei, Gao Lan. The impact of carbon trade on the management of short-rotation forest plantations[J]. Forest Policy and Econo-mics, 2016, 62:30-35.
|
[26] |
薛蓓蓓, 田国双. 基于碳汇木材复合经营目标的综合效益及影响因素分析[J]. 南京林业大学学报:自然科学版, 2021, 45(2):205-212.
|
[27] |
张楠, 宁卓, 杨红强. 弗斯曼模型及其广义改进:基于林地期望值评估方法学演进[J]. 林业经济, 2020, 42(10):3-15.
|
[28] |
Baker J S, Van Houtven G, Phelan J, et al. Projecting US forest management,market,and carbon sequestration responses to a high-impact climate scenario[J]. Forest Policy and Economics, 2023, 147:102898.
doi: 10.1016/j.forpol.2022.102898
|
[29] |
Xie Yalin, Wang Haiyan, Lei Xiangdong. Simulation of climate change and thinning effects on productivity of Larix olgensis plantations in northeast China using 3-PGmix model[J]. Journal of Environmental Management, 2020, 261:110249.
doi: 10.1016/j.jenvman.2020.110249
|
[30] |
Sperlich D, Nadal-Sala D, Gracia C, et al. Gains or losses in forest productivity under climate change? The uncertainty of CO2 fertilization and climate effects[J]. Climate, 2020, 8(12):141.
doi: 10.3390/cli8120141
|