欢迎访问林草资源研究

林草资源研究 ›› 2023›› Issue (5): 48-55.doi: 10.13466/j.cnki.lczyyj.2023.05.006

• 科学研究 • 上一篇    下一篇

森林火灾时空分布特征及易发性分析研究

张国丽(), 慈雪伦, 杨雪清(), 蒋春颖, 孙志超, 孟海丁   

  1. 国家林业和草原局林草调查规划院,北京 100714
  • 收稿日期:2023-07-24 修回日期:2023-08-29 出版日期:2023-10-28 发布日期:2023-12-20
  • 通讯作者: 杨雪清,教授级高级工程师,主要从事林草防灾减灾、林业3S技术应用等方面的研究工作。Email:xqyangok@126.com
  • 作者简介:张国丽,工程师,博士,主要从事森林草原防火、自然灾害风险评估与预测等方面的研究工作。Email:zhangguoli@mail.bnu.edu.cn

Study on Spatio-Temporal Distribution Characteristics and Susceptibility Analysis of Forest Fire

ZHANG Guoli(), CI Xuelun, YANG Xueqing(), JIANG Chunying, SUN Zhichao, MENG Haiding   

  1. Academy of Forestry Inventory and Planning,National Forestry and Grassland Administration,Beijing 100714,China
  • Received:2023-07-24 Revised:2023-08-29 Online:2023-10-28 Published:2023-12-20

摘要:

我国森林防火形势严峻,对森林火灾时空分布特征和易发性进行分析研究,旨在为森林火灾预防提供科学依据。基于第一次全国森林和草原火灾风险普查数据,分析2011—2020年31个省份森林火灾时空分布特征,选取可燃物、气象条件和地形等林火驱动因素,通过采用随机森林算法构建31个省份的林火易发性分析模型。结果显示:1)2011—2020年31个省份林火发生次数和火场面积年际变化整体呈下降趋势,不同地理分区差异显著;冬春季森林火灾占比达85.48%。2)单位面积总可燃物载量是林火易发性最重要的驱动因素,其次是月平均气温、月最小相对湿度和月平均降水。3)采用受试者工作特征曲线(ROC)、曲线下面积(AUC)和准确度(ACC)分析模型精度,AUC值和ACC值分别为0.87和0.84,说明易发性模型精度较高。4)31个省份的林火易发性具有明显的地域分异差异,东北、西南和华东地区以高和中高易发性等级为主,华中和华南地区以中低易发性等级为主,华北和西北地区以低和极低易发性等级为主。

关键词: 森林火灾, 随机森林算法, 时空特征, 易发性分析

Abstract:

The situation of forest fire prevention in China is severe.Analyzing and studying the spatial-temporal characteristics and susceptibility of forest fire can provide scientific basis for forest fire prevention.Based on the data of the first national forest and grassland fire risk survey,the temporal and spatial distribution characteristics of forest fire in China's 31 provinces during 2011—2020 were analyzed,and the forest fire susceptibility model in China's 31 provinces was established by using the random forest algorithm through the construction of forest fire driving factors such as fuel,meteorological conditions and terrain.The results were as follows:1)The interannual change of the frequency and burned areas of forest fire in 31 provinces showed a downward trend from 2011 to 2020.The difference was significant in different geographical regions.Forest fires in winter and spring accounted for 85.48%.2)The fuel load per unit area is the most important driving factor of forest fire susceptibility,followed by monthly mean temperature,monthly minimum relative humidity and monthly mean precipitation.3)Receiver operating characteristic curve(ROC),area under curve(AUC)and accuracy(ACC)were used to analyze the accuracy of the prediction model.The values of AUC and ACC were 0.87 and 0.84,respectively,indicating a high accuracy of the susceptibility model.4)The forest fire susceptibility in China's 31 provinces had obvious regional differences.Northeast,Southwest and East China were dominated by high and medium-high susceptibility levels,Central China and South China were dominated by medium-low susceptibility levels,and North and Northwest China were dominated by low and very low susceptibility levels.

Key words: forest fire, random forest algorithm, spatial-temporal characteristic, susceptibility analysis

中图分类号: