[1] |
何斌, 李青, 李望军, 等. 不同林龄华山松人工林土壤养分及其生态化学计量特征[J]. 林业资源管理, 2023(1):71-79.
|
[2] |
马玉珠, 钟全林, 靳冰洁, 等. 中国植物细根碳、氮、磷化学计量学的空间变化及其影响因子[J]. 植物生态学报, 2015, 39(2):159-166.
doi: 10.17521/cjpe.2015.0015
|
[3] |
陈蓉, 王韦韦, 曹丽荣, 等. 马尾松和杉木人工林细根碳氮磷化学计量特征随土层深度的变化[J]. 生态学报, 2023, 43(9):3709-3718.
|
[4] |
Agren G I. The C:N:P stoichiometry of autotrophs—theory and observations[J]. Ecology Letters, 2004, 7(3):185-191.
doi: 10.1111/ele.2004.7.issue-3
|
[5] |
Tang Zhiyao, Xu Wenting, Zhou Guoyi, et al. Patterns of plant carbon,nitrogen,and phosphorus concentration in relation to productivity in China's terrestrial ecosystems[J]. Proceedings of the National Academy of Sciences, 2018, 115(16):4033-4038.
doi: 10.1073/pnas.1700295114
|
[6] |
Koerselman W, Meuleman A F M. The vegetation N:P ratio:a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6):1441-1450.
doi: 10.2307/2404783
|
[7] |
梁月明, 潘复静, 马姜明, 等. 不同林龄和密度马尾松人工林针叶和根系的生态化学计量特征[J]. 广西植物, 2021, 41(9):1497-1508.
|
[8] |
朱育锋, 吴玱, 李舒惠, 等. 广西桉树碳氮磷分配格局及其生态化学计量特征[J]. 湖南农业大学学报:自然科学版, 2019, 45(2):166-171.
|
[9] |
何季, 卢青, 吴传美, 等. 贵州省珍稀四球茶茶树和土壤的碳氮磷生态化学计量特征[J]. 南方农业学报, 2021, 52(3):682-692.
|
[10] |
曾锋, 邱治军, 许秀玉. 森林凋落物分解研究进展[J]. 生态环境学报, 2010, 19(1):239-243.
doi: 10.16258/j.cnki.1674-5906(2010)01-0239-05
|
[11] |
张小全, 吴可红, Murach D. 树木细根生产与周转研究方法评述[J]. 生态学报, 2000, 20(5):875-883.
|
[12] |
魏鹏, 李贤伟, 范川, 等. 华西雨屏区香樟人工林土壤表层细根生物量和碳储量[J]. 应用生态学报, 2013, 24(10):2755-2762.
|
[13] |
兰斯安, 杜虎, 曾馥平, 等. 不同林龄杉木人工林碳储量及其分配格局[J]. 应用生态学报, 2016, 27(4):1125-1134.
|
[14] |
兰秀, 杜虎, 宋同清, 等. 广西主要森林植被碳储量及其影响因素[J]. 生态学报, 2019, 39(6):2043-2053.
|
[15] |
陈莉, 宋敏, 宋同清, 等. 广西不同林龄软阔林碳储量及其分配格局[J]. 生态学杂志, 2017, 36(3):592-600.
|
[16] |
Du Hu, Liu Lu, Su Liang, et al. Seasonal changes and vertical distribution of fine root biomass during vegetation restoration in a karst area,Southwest China[J]. Frontiers in Plant Science, 2019, 9:2001.
doi: 10.3389/fpls.2018.02001
|
[17] |
鲍士旦. 土壤农化分析[M].3版. 北京: 中国农业出版社, 2001.
|
[18] |
邵学新, 李文华, 吴明, 等. 杭州湾潮滩湿地3种优势植物碳氮磷储量特征研究[J]. 环境科学, 2013, 34(9):3451-3457.
|
[19] |
Makita N, Hirano Y, Mizoguchi T, et al. Very fine roots respond to soil depth:biomass allocation,morphology,and physiology in a broad-leaved temperate forest[J]. Ecological Research, 2011, 26(1):95-104.
doi: 10.1007/s11284-010-0764-5
|
[20] |
Terzaghi M, Montagnoli A, Di Iorio A, et al. Fine-root carbon and nitrogen concentration of European beech(Fagus sylvatica L.) in Italy Prealps:possible implications of coppice conversion to high forest[J]. Frontiers in plant science, 2013, 4:192.
doi: 10.3389/fpls.2013.00192
pmid: 23785374
|
[21] |
Wardle D A, Walker L R, Bardgett R D. Ecosystem properties and forest decline in contrasting long-term chronosequences[J]. Science, 2004, 305(5683):509-513.
doi: 10.1126/science.1098778
pmid: 15205475
|
[22] |
于彤, 申文辉, 彭玉华, 等. 广西不同地区红锥人工林主要营养元素分布及积累量差异研究[J]. 广西大学学报:自然科学版, 2021, 46(4):1110-1117.
|
[23] |
Elser J J, Fagan W F, Kerkhoff A J, et al. Biological stoichiometry of plant production:Metabolism,scaling and ecological response to global change[J]. New Phytologist, 2010, 186(3):593-608.
doi: 10.1111/j.1469-8137.2010.03214.x
pmid: 20298486
|
[24] |
曾德慧, 陈广生. 生态化学计量学:复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29(6):1007-1019.
doi: 10.17521/cjpe.2005.0120
|
[25] |
洪滔, 何晨阳, 黄贝佳, 等. 不同林龄千年桐人工林的碳含量和碳储量及碳库分配格局[J]. 植物资源与环境学报, 2021, 30(1):9-16.
|
[26] |
蓝肖, 郝海坤, 黄开勇, 等. 杉木人工林生物量分布特征及其碳计量参数[J]. 林业资源管理, 2023(2):50-56.
|
[27] |
Xu Xia, Li Dejun, Cheng Xiaoli, et al. Carbon:Nitrogen stoichiometry following afforestation:a global synthesis[J]. Scientific Reports, 2016, 6(1):19117.
doi: 10.1038/srep19117
|