[1] |
李海奎, 法蕾. 基于分级的全国主要树种树高-胸径曲线模型[J]. 林业科学, 2011, 47(10):83-90.
|
[2] |
Andersen H, McGaughey R J, Reutebuch S E. Estimating forest canopy fuel parameters using LIDAR data[J]. Remote Sensing of Environment, 2005, 94(4):441-449.
doi: 10.1016/j.rse.2004.10.013
|
[3] |
Balduzzi M A, Zande D V, Stuckens J, et al. The properties of terrestrial laser system intensity for measuring leaf geometries:A case study with conference pear trees(Pyrus Communis)[J]. Sensors, 2011, 11(2):1657-1681.
doi: 10.3390/s110201657
|
[4] |
李增元, 陈尔学. 中国林业遥感发展历程[J]. 遥感学报, 2021, 25(1):292-301.
|
[5] |
韦雪花. 轻小型航空遥感森林几何参数提取研究[D]. 北京: 北京林业大学, 2013.
|
[6] |
吕金城, 王振锡, 杨勇强, 等. 基于无人机影像的天山云杉林树高提取及蓄积量的反演[J]. 新疆农业科学, 2021, 58(10):1838-1845.
doi: 10.6048/j.issn.1001-4330.2021.10.009
|
[7] |
Swayze N C, Tinkham W T. Application of unmanned aerial system structure from motion point cloud detected tree heights and stem diameters to model missing stem diameters[J]. MethodsX, 2022, 9:101729.
doi: 10.1016/j.mex.2022.101729
|
[8] |
Mao Zhihui, Lu Zhuo, Wu Yanjie, et al. DBH estimation for indivi-dual tree:Two-dimensional images or three-dimensional point clouds?[J]. Remote Sensing, 2023, 15(16):4116.
doi: 10.3390/rs15164116
|
[9] |
Lefsky M A, Cohen W B, Acker S A, et al. Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests[J]. Remote Sensing of Environment, 1999, 70(3):339-361.
doi: 10.1016/S0034-4257(99)00052-8
|
[10] |
Hawbaker T J, Gobakken T, Lesak A, et al. Light detection and ranging-based measures of mixed hardwood forest structure[J]. Forest Science, 2010, 56(3):313-326.
|
[11] |
Zhang Zhengnan, Wang Tiejun, Skidmore A K, et al. An improved area-based approach for estimating plot-level tree DBH from airborne LiDAR data[J]. Forest Ecosystems, 2023, 10:100089.
doi: 10.1016/j.fecs.2023.100089
|
[12] |
Zhao Xiaoqian, Guo Qinghua, Su Yanjun, et al. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117:79-91.
doi: 10.1016/j.isprsjprs.2016.03.016
|
[13] |
Næsset E, Gobakken T. Estimation of above-and below-ground biomass across regions of the boreal forest zone using airborne laser[J]. Remote Sensing of Environment, 2008, 112(6):3079-3090.
doi: 10.1016/j.rse.2008.03.004
|
[14] |
Zhang Zhengnan, Cao Lin, Mulverhill C, et al. Prediction of diameter distributions with multimodal models using LiDAR data in subtropical planted forests[J]. Forests, 2019, 10(2):125.
doi: 10.3390/f10020125
|
[15] |
庞勇, 李增元. 基于机载激光雷达的小兴安岭温带森林组分生物量反演[J]. 植物生态学报, 2012, 36(10):1095-1105.
|
[16] |
常晓敏. 华北北部防护林主要树种立地-生长-结构-功能多元耦合关系研究[D]. 北京: 北京林业大学, 2021.
|
[17] |
Belgiu M, Drăguţ L. Random forest in remote sensing:A review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114:24-31.
doi: 10.1016/j.isprsjprs.2016.01.011
|
[18] |
林卓, 吴承祯, 洪伟, 等. 基于BP神经网络和支持向量机的杉木人工林收获模型研究[J]. 北京林业大学学报, 2015, 37(1):42-47.
|
[19] |
曹庆先. 北部湾沿海红树林生物量和碳贮量的遥感估算[D]. 北京: 中国林业科学研究院, 2010.
|
[20] |
付逍遥. 基于机载和无人机点云数据的平原人工林结构参数动态监测[D]. 南京: 南京林业大学, 2021.
|
[21] |
黄昕晰. 基于无人机影像与Mask R-CNN的城市单木检测与参数提取研究[D]. 杭州: 浙江农林大学, 2020.
|
[22] |
张峥男. 杉木和桉树人工林胸径结构估测和采伐优先等级划分[D]. 南京: 南京林业大学, 2023.
|
[23] |
Tian Dongyuan, Jiang Lichun, Shahzad M K, et al. Climate-sensitive tree height-diameter models for mixed forests in Northeastern China[J]. Agricultural and Forest Meteorology, 2022, 326:109182.
doi: 10.1016/j.agrformet.2022.109182
|
[24] |
Lines E R, Zavala M A, Purves D W, et al. Predictable changes in aboveground allometry of trees along gradients of temperature,aridity and competition[J]. Global Ecology and Biogeography, 2012, 21(10):1017-1028.
doi: 10.1111/geb.2012.21.issue-10
|
[25] |
Hulshof C M, Swenson N G, Weiser M D. Tree height-diameter allometry across the United States[J]. Ecology and Evolution, 2015, 5(6):1193-1204.
doi: 10.1002/ece3.1328
pmid: 25859325
|
[26] |
欧强新. 基于机器学习的吉林天然针阔混交林生长建模[D]. 北京: 中国林业科学研究院, 2019.
|
[27] |
朱兆廷, 孙玉军, 梁瑞婷, 等. 基于树冠和竞争因子的杉木胸径估测[J]. 北京林业大学学报, 2023, 45(9):42-51.
|
[28] |
陈玉玲. 人工林适地适树与生长收获效益评估研究[D]. 北京: 北京林业大学, 2020.
|
[29] |
Mensah S, Pienaar O L, Kunneke A, et al. Height-Diameter allometry in South Africa's indigenous high forests:Assessing generic models performance and function forms[J]. Forest Ecology and Management, 2018, 410:1-11.
doi: 10.1016/j.foreco.2017.12.030
|
[30] |
Cysneiros V C, Pelissari A L, Gaui T D, et al. Modeling of tree height-diameter relationships in the Atlantic forest:Effect of forest type on tree allometry[J]. Canadian Journal of Forest Research, 2020, 50(12):1289-1298.
doi: 10.1139/cjfr-2020-0060
|
[31] |
Mokroš M, Liang Xinlian, Surovy P, et al. Evaluation of close-range photogrammetry image collection methods for estimating tree diameters[J]. ISPRS International Journal of Geo-Information, 2018, 7(3):93.
doi: 10.3390/ijgi7030093
|
[32] |
Chave J, Andalo C, Brown S, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests[J]. Oecologia, 2005, 145:87-99.
doi: 10.1007/s00442-005-0100-x
pmid: 15971085
|