欢迎访问林草资源研究

林草资源研究 ›› 2024›› Issue (1): 56-64.doi: 10.13466/j.cnki.lczyyj.2024.01.008

• 科学研究 • 上一篇    下一篇

基于机载激光雷达和机器学习的林分平均胸径遥感估测

唐佳俊(), 柴宗政()   

  1. 贵州大学 林学院,贵阳 550025
  • 收稿日期:2023-10-17 修回日期:2023-12-09 出版日期:2024-02-28 发布日期:2024-03-22
  • 通讯作者: 柴宗政,副教授,主要研究方向:森林经营与生态建模。Email:chaizz@126.com
  • 作者简介:唐佳俊,硕士研究生,主要研究方向:林业遥感。Email:tangjj0706@163.com
  • 基金资助:
    国家自然科学基金“近自然经营对马尾松群落植物功能性状改善的驱动机制”(32001314);贵州省林业科研项目“马尾松中幼林近自然抚育关键技术研究”(黔林科合[2022]38号);贵州大学培育项目“近自然经营对马尾松群落植物功能性状调控机制”(贵大培育[2019]38号)

Remote Sensing Estimation of Average Diameter at Breast Height of Forest Stands Based on Airborne LiDAR and Machine Learning Algorithms

TANG Jiajun(), CHAI Zongzheng()   

  1. College of Forestry,Guizhou University,Guiyang 550025,China
  • Received:2023-10-17 Revised:2023-12-09 Online:2024-02-28 Published:2024-03-22

摘要:

为探究不同模型对林分平均胸径的预测精度,使用贵州省桂花国有林场马厂工区同步获取的机载激光雷达点云数据和地面实测样地数据,通过提取样地水平的点云特征变量,采用方差膨胀因子分析和皮尔逊相关性检验进行自变量选择,建立机器学习模型估测样地平均胸径。结果表明:1)点云特征变量,如平均冠层高度和高度偏态与林分平均胸径有很强的相关性。2)机器学习模型(随机森林、支持向量机、最近邻算法)优于多元线性回归模型,其中,随机森林的拟合效果最好。随机森林的决定系数(R2)为0.71,均方根误差(RMSE)为2.50。3)通过柳杉纯林、针叶混交林、针阔混交林、马尾松纯林4种森林类型的林分平均胸径预测值与实际值差值,进一步证实随机森林模型精度最高,拟合效果最好。利用机载激光雷达点云数据提取点云特征变量,并构建基于机器学习算法的林分平均胸径估测模型是可行的,该方法的精度能满足森林资源调查的应用需求,可作为辅助林业调查工作的技术手段。

关键词: 机载激光雷达, 林分平均胸径, 随机森林, 点云特征变量

Abstract:

In order to explore the prediction accuracy of different models on the average diameter at breast height of forest stands,airborne LiDAR point cloud data and ground measured sample plot datawere obtained simultaneously by the Machang working area of Guihua State-owned Forest Farm in Guizhou Province.By extracting point cloud feature variables at the sample plot level,a machine learning model is used toestimate the average diameter at breast height of the sample plot,variance inflation factor analysis and Pearson correlation test are used to select independent variables.The results indicate that:1)Point cloud feature variables show a strong correlation with the average diameter at breast height of the forest stand,such as the average canopy height and height skewness.2)Machine learning models(random forest,support vector machine,nearest neighbor algorithm)outperform multiple linear regression models,with random forest having the best fitting performance.The determination coefficient(R2) for the random forest model is 0.71,withthe root mean square error(RMSE)of 2.50.3)The difference between the predicted and actual average diameter at breast height of four forest types:Cryptomeria forest,mixed coniferous forest,mixed coniferous and broad-leaved forest,and Pinusmassoniana forest further confirms that the random forest model has the highest accuracy and the best fitting effect.In summary,it is feasible to extract point cloud feature variables using airborne LiDAR point cloud data and construct a forest average diameter estimation model based on machine learning algorithms.The accuracy of this method meets the application requirements of forest resource investigation and can be used as a technical means to assist in forestry investigation work.

Key words: airborne LiDAR, average diameter at breast height of the forest stand, random forest, point cloud feature variables

中图分类号: