欢迎访问林草资源研究

林草资源研究 ›› 2024›› Issue (2): 8-16.doi: 10.13466/j.cnki.lczyyj.2024.02.002

• 科学研究 • 上一篇    下一篇

基于MaxEnt模型的森林火险区划等级研究——以烟台黄渤海新区为例

李杰1(), 晁碧霄1, 闫钰倩2, 姜帆1, 张大为1, 孙永康1, 邹全程1()   

  1. 1.国家林业和草原局林草调查规划院,北京 100714
    2.国家林业和草原局财会审计中心,北京 100714
  • 收稿日期:2024-03-25 修回日期:2024-04-19 出版日期:2024-04-28 发布日期:2024-09-02
  • 通讯作者: 邹全程,正高级工程师,主要从事森林草原防灭火前期研究、林草规划设计工作。Email:379776298@qq.com
  • 作者简介:李杰,工程师,主要从事森林草原火灾防治管理、前期研究等理论及机制研发与实践工作。Email:15801165056@139.com

Forest Fire Risk Zoning Based on MaxEnt Model—A Case Study of Yantai Yellow and Bohai Seas New Area

LI Jie1(), CHAO Bixiao1, YAN Yuqian2, JIANG Fan1, ZHANG Dawei1, SUN Yongkang1, ZOU Quancheng1()   

  1. 1. Academy of Forestry Inventory and Planning,National Forestry and Grassland Administration,Beijing 100714,China
    2. Accounting and Auditing Center of National Forestry and Grassland Administration,Beijing 100714,China
  • Received:2024-03-25 Revised:2024-04-19 Online:2024-04-28 Published:2024-09-02

摘要:

森林火灾是一种突发性强、破坏性大的自然灾害,受气象、地形、植被、人类活动等影响。科学制定森林火险区划等级是预防和管控森林火灾的基础。最大熵(MaxEnt)作为机器学习模型的一种,被广泛应用于国内外预测森林火灾发生概率、识别森林火灾风险等级的相关研究,并被证实具有较高准确性。烟台黄渤海新区位于胶东半岛、黄渤海交界处,经济发达、人口密度大,人类活动对森林影响显著,在全国森林防火工作中具有代表性。以烟台黄渤海新区为例,采用MaxEnt模型,结合历史火情数据和气象、地形、地物类型、社会经济等主导环境变量,预测森林火灾发生概率,划定森林火险区划等级。结果表明:1)优势树种(组)、人口密度对森林火灾发生具有重要影响;2)烟台黄渤海新区高、中、一般风险区面积接近,高风险区主要位于西南部山区,一般风险区主要位于东北部沿海。经检验,本研究模型预测结果具有较高准确性,可为全国森林火险区划提供参考。

关键词: 森林火险区划, MaxEnt, 烟台

Abstract:

Forest fires are sudden and destructive natural disasters influenced by various factors such as meteorology,terrain,vegetation,and human activities.The establishment of a forest fire risk zoning is essential for effective prevention and controlling forest fires,which is of great significance for carrying out related work in the future.As a machine learning method,MaxEnt has gained widespread domestic and international usage in predicting probabilities of occurrences and identifying zoning of forest fire risk due to its demonstrated high accuracy.Yantai Yellow and Bohai Seas New Area,located at the junction of Jiaodong Peninsula and Yellow and Bohai Seas has a developed economy,high population density,and significant human impact on forests,making it representative of forest fire prevention efforts in China.This study took Yantai Yellow and Bohai Seas New Area as an example and utilized MaxEnt to predict the probability of forest fire occurrence and delineate forest fire risk zoning based on historical fire incident data,as well as dominant environmental variables such as meteorology,topography,land cover types,and socio-economic factors.The research findings indicate that:1)Dominant tree species(group)and population density have significant impacts on forest fire occurrence;2)In Yantai Yellow and Bohai Seas New Area,the areas with high,medium,and general risk levels are similar in size.High-risk areas are mainly concentrated in the southwestern mountainous region,while general-risk areas are primarily found along the northeastern coast.Through verification,this study's results have shown a high level of accuracy and can provide a methodological exploration for subsequent national forest fire risk zoning.

Key words: forest fire zoning, MaxEnt, Yantai

中图分类号: