[1] |
周浙昆, 王腾翔, 黄健, 等. 西藏芒康似勾儿茶叶属(鼠李科)化石及其生物地理学意义[J]. 中国科学:地球科学, 2020, 50(2):233-244.
|
[2] |
WEI Ruoxun, ZAHNG Zhiyun, CHEN Yilin, et al. Drupand seed morphology of the Berchemia and Berchemiella(Rhamnaceae)and its systematic significance[J]. Guihaia, 2014, 34(5):589-595.
|
[3] |
俞浩, 张孝林, 毛斌斌, 等. 牯岭勾儿茶多糖对老龄小鼠免疫功能及抗氧化能力的影响[J]. 食品工业科技, 2014, 35(5):350-353.
|
[4] |
朱李奎, 何青松, 马开骠, 等. 生根粉浓度和环剥宽度对银杏高空压条生根的影响[J]. 经济林研究, 2017, 35(4):236-241.
|
[5] |
NATH S M, IQBAL M H, MASUDUL M H. Effect of variety and growth regulator concentration on success of air layering in plum[J]. Agricultural Sciences, 2022, 13(1):65-73.
|
[6] |
王欣, 李倩, 袁雪涛, 等. 五叶地锦高空压条生根条件优化[J]. 分子植物育种, 2022, 20(5):1734-1740.
|
[7] |
郑雨盼, 杨锦昌, 邹文涛, 等. 常用促根生长调节剂对闽楠高空压条生根的影响[J]. 热带作物学报, 2020, 41(9):1803-1807.
doi: 10.3969/j.issn.1000-2561.2020.09.012
|
[8] |
张帅, 李荣生, 尹光天, 等. 蛇皮果高空压条繁殖试验[J]. 热带作物学报, 2013, 34(7):1242-1246.
|
[9] |
WIDYASTUTI B I, YUDONO P, PUTRA S T E. Effects of auxin and cytokinin levels on the success of air layering in tea plant clones of GMB 7 and GMB 9 using husk charcoal,cocopeat and moss media[J]. Ilmu Pertanian(Agricultural Science), 2020, 5(2):86-91.
|
[10] |
刘倩, 高娅妮, 柳旭, 等. 混合盐碱胁迫下接种丛枝菌根真菌和根瘤菌对紫花苜蓿生长的影响[J]. 生态学报, 2018, 38(17):6143-6155.
|
[11] |
杨顺尧, 刘苑秋, 郭圣茂, 等. 毛竹扩张对庐山日本柳杉细根生物量空间分布的影响[J]. 江苏农业科学, 2019, 47(14):178-181.
|
[12] |
郑雨盼. 闽楠幼树高空压条繁殖技术研究[D]. 北京: 中国林业科学研究院, 2020.
|
[13] |
张志恒, 王玉琴, 任国艳, 等. 基于主成分分析和隶属函数分析评价不同添加剂处理的玉米秸秆青贮的发酵品质[J]. 动物营养学报, 2022, 34(4):2677-2688.
doi: 10.3969/j.issn.1006-267x.2022.04.061
|
[14] |
ZHU Jiankang. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2):313-324.
doi: S0092-8674(16)31080-7
pmid: 27716505
|
[15] |
MARHAVA P, HOERMAYER L, YOSHIDA S, et al. Re-activation of stem cell pathways for pattern restoration in plant wound healing[J]. Cell, 2019, 177(4):957-969.
doi: S0092-8674(19)30401-5
pmid: 31051107
|
[16] |
EFRONI I, MELLO A, NAWY T, et al. Root regeneration triggers an embryo-like sequence guided by hormonal interactions[J]. Cell, 2016, 165(7):1721-1733.
doi: S0092-8674(16)30491-3
pmid: 27212234
|
[17] |
TYAGI K, MAOZ I, LEWINSOHN E, et al. Girdling of table grapes at fruit set can divert the phenylpropanoid pathway towards accumulation of proanthocyanidins and change the volatile composition[J]. Plant science, 2020,296:110495.
|
[18] |
GOREN R, HUBERMAN M, GOLDSCHMIDT E E. Girdling:Physiological and horticultural aspects[J]. Horticultural Reviews, 2004,30:1-36.
|
[19] |
LI Chunyao, WEISS D, GOLDSCHMIDT E E. Girdling affects carbohydrate-related gene expression in leaves,bark and roots of alternate-bearing citrus trees[J]. Annals of botany, 2003, 92(1):137-143.
pmid: 12763756
|
[20] |
ZHAI Ning, PAN Xuan, ZENG Minhua, et al. Developmental trajectory of pluripotent stem cell establishment in Arabidopsis callus guided by a quiescent center-related gene network[J]. Development. 2023, 150(5):dev200879.
|
[21] |
易米平, 张日清, 董凤祥, 等. 杂交榛空中分段压条繁殖技术的研究[J]. 中南林业科技大学学报, 2011, 31(4):84-89.
|
[22] |
马秋月, 王玉虓, 李淑顺, 等. 元宝枫扦插生根特性及解剖学探究[J/OL]. 分子植物育种(2022-08-02)[2023-12-20]. https://kns.cnki.net/kcms/detail/46.1068.S.20220801.1830.004.html.
|
[23] |
孙燕, 赵青云, 龙宇宙, 等. 不同育苗基质下咖啡种间嫁接苗生长及光合特性[J]. 热带作物学报, 2021, 42(6):1606-1612.
doi: 10.3969/j.issn.1000-2561.2021.06.014
|
[24] |
LIU Jingchun, SHENG Lihong, XU Yingqiang. et al. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis[J]. The Plant Cell, 2014, 26(3):1081-1093.
doi: 10.1105/tpc.114.122887
pmid: 24642937
|
[25] |
VERSTRAETEN I, SCHOTTE S, GEELEN D. Hypocotyl adventitious root organogenesis differs from lateral root development[J]. Frontiers in Plant Science, 2014, 5(495):495.
|
[26] |
LING Guan, TARENGWA R, CHENG ZongmingMax, et al. Auxin regulates adventitious root formation in tomato cuttings[J]. BMC Plant Biology, 2019, 19(1):435.
doi: 10.1186/s12870-019-2002-9
pmid: 31638898
|
[27] |
JI Xinglong, LI Hongliang, QIAO Zhiwen, et al. The BTB protein MdBT2 recruits auxin signaling components to regulate adventitious root formation in apple[J]. Plant Physiology, 2022, 189(2):1005-1020.
doi: 10.1093/plphys/kiac084
pmid: 35218363
|
[28] |
刘昊, 宋晓波, 周乃富, 等. 吲哚丁酸对核桃嫩枝扦插生根及内源激素变化的影响[J]. 浙江农林大学学报, 2017, 34(6):1038-1043.
|
[29] |
SÁNCHEZ C, VIELBA J M, FERRO E, et al. Two Scarecrow-Like genes are induced in response to exogenous auxin in rooting-competent cuttings of distantly related forest species[J]. Tree Physiology. 2007, 27(10):1459-1470.
pmid: 17669736
|
[30] |
HOFMANN N. Getting to the root of regeneration:Adventitious rooting and callus formation[J]. Plant Cell, 2014, 26(3):845.
|
[31] |
LIN Guan, MURPHY A S, PEER W A, et al. Physiological and molecular regulation of adventitious root formation[J]. Critical Reviews in Plant Sciences, 2015, 34(5):506-521.
|
[32] |
ZHANG Wangxiang, FAN Junjun, TAN Qianqian, et al. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings[J]. PLoS One, 2017, 12(2):e0172320.
|
[33] |
VERSTRAETEN I, BEECKMAN T, GEELEN D. Adventitious root induction in Arabidopsis thaliana as a model for in vitro root organogenesis[J]. Methods in Molecular Biology, 2013,959:159-175.
|
[34] |
陈春桦, 陈雪梅, 杨治华, 等. 外源激素处理对三峡消落带落羽杉扦插生根的影响[J]. 生态学报, 2021, 41(21):8635-8642.
|
[35] |
LIHAVAINEN J, EDLUND E, BJÖRKÉN L, et al. Stem girdling affects the onset of autumn senescence in aspen in interaction with metabolic signals[J]. Physiology Plant. 2021, 172(1):201-217.
|