欢迎访问林草资源研究

林草资源研究 ›› 2024›› Issue (2): 92-100.doi: 10.13466/j.cnki.lczyyj.2024.02.011

• 技术应用 • 上一篇    下一篇

基于融合点云数据的马尾松林地单木分割算法研究

李炜(), 王晓红()   

  1. 贵州大学 矿业学院,贵阳 550000
  • 收稿日期:2023-10-25 修回日期:2024-01-22 出版日期:2024-04-28 发布日期:2024-09-02
  • 通讯作者: 王晓红,副教授,博士,主要从事3S技术应用研究。Email:xhwang@gzu.edu.cn
  • 作者简介:李 炜,硕士研究生,主要从事摄影测量与遥感研究。Email:1470385105@qq.com
  • 基金资助:
    国家自然青年科学基金项目“基于深度特征表示的稳健高光谱解混方法研究”(42301440)

Individual Tree Segmentation Algorithm of Pinus MassonianaForest Based on Fusion Point Cloud Data

LI Wei(), WANG Xiaohong()   

  1. Mining College of Guizhou University,Guiyang 550000,China
  • Received:2023-10-25 Revised:2024-01-22 Online:2024-04-28 Published:2024-09-02

摘要:

激光雷达技术在森林资源调查中具有较大优势,但单平台采集的数据往往存在扫描盲区,难以获取完整的森林结构信息。为此,以马尾松林作为研究对象,探究基于融合点云数据的马尾松林单木分割适宜性算法。首先提出一种针对森林样地点云数据融合的方法,然后采用标记控制分水岭算法、距离判别聚类算法和层堆叠算法对马尾松林进行单木分割,并对3种算法的关键参数的选取进行分析,最后提取树高验证融合点云估测森林结构参数的适用性。得出实验结果如下:1)提出的点云融合方法可以有效融合机载和手持激光雷达点云,配准误差为0.054 m;2)3种单木分割算法中,标记控制分水岭算法分割精度最高,总体精度为0.88,高于距离判别聚类算法和层堆叠算法;3)利用标记控制分水岭算法分割的单木提取树高,基于融合点云数据的R2值为0.983 7,RMSE为0.759 6 m,相较于单一点云数据,精度明显提高。研究结果可为多源激光雷达在林业领域的应用以及马尾松林地森林资源管理提供技术支持。

关键词: 单木分割, 融合点云数据, 单木树高, 标记控制分水岭算法, 马尾松

Abstract:

LiDAR technology has a great advantage in forest resources investigation,but the data collected by a single platform often has scanning blind spots,which makes it difficult to obtain complete forest structure information.For this reason,we take the Pinus massoniana forests as the research object and explore the suitability algorithm for individual tree segmentation of Pinus massoniana forests based on fusion point cloud data.We first proposed a method for fusing forest-sample point cloud data.Then,we adopted the marker-controlled watershed algorithm,distance-based clustering algorithm,and the layer stacking algorithm for the Pinus massoniana forests for individual tree segmentation.Finally,tree heights were extracted to verify the applicability of the fusion point cloud for estimating forest structural parameters.The experimental results are as follows:1)The proposed fusion point cloud method can effectively fuse airborne lidar point cloud and hand-held lidar point cloud with a registration error of 0.054 m.2)Among the three tree segmentation algorithms,the marker-controlled watershed algorithm has the highest segmentation accuracy,with an overall accuracy of 0.88,which is higher than the distance-based clustering algorithm and the layer stacking algorithm.3)The extracted tree height of individual tree segmented using the marker-controlled watershed algorithm has an R2 of 0.983 7 and an RMSE of 0.759 6 m based on the fusion point cloud data,which is a significant improvement in accuracy compared to single point cloud data.The results of the study can provide technical support for the application of multi-source LiDAR in forestry field and the management of forest resources in Pinus massoniana forests.

Key words: individual tree segmentation, fusion point cloud data, height of individual tree, marker-controlled watershed algorithm, Pinus massoniana

中图分类号: