欢迎访问林草资源研究

林业资源管理 ›› 2018›› Issue (4): 100-104.doi: 10.13466/j.cnki.lyzygl.2018.04.016

• 科学研究 • 上一篇    下一篇

喀斯特山区森林蓄积量的合成孔径雷达遥感估测研究

杨永恬(), 杨广斌, 赵海兵   

  1. 贵州师范大学 地理环境科学学院,贵阳 550001
  • 收稿日期:2018-05-08 修回日期:2018-06-22 出版日期:2018-08-28 发布日期:2020-09-25
  • 作者简介:杨永恬(1979-),女,贵州大方人,讲师,博士,主要研究方向为林业遥感应用。Email:445968385@qq.com
  • 基金资助:
    贵州师范大学博士启动基金项目(20101218)

Estimation of Forest Volume in Karst Mountain Ecosystem with Synthetic Aperture Radar Remote Sensing Technology

YANG Yongtian(), YANG Guangbin, ZHAO Haibin   

  1. College of Geographical & Environmental Sciences,Guizhou Normal University,Guiyang 550001,China
  • Received:2018-05-08 Revised:2018-06-22 Online:2018-08-28 Published:2020-09-25

摘要:

喀斯特山区是我国西南地区的一种特殊而脆弱的生态景观。由于阴云多雨,喀斯特山区的森林光学遥感数据不易及时获取,影响该生态系统森林资源的调查。合成孔径雷达(SAR)估测技术利用雷达穿透能力强,可穿过云雾直达林冠,其微波与冠叶和枝干发生作用,具有全天候的观测能力,因此非常适合云雾多雨山区森林蓄量的定量评估。本研究选取贵州省惠水县喀斯特山区为试验区,应用SAR数据和森林资源地面数据,建立回归参数模型,估测该试验区的森林蓄量,并对此方法的结果进行精度分析,以期为贵州喀斯特山地生态系统森林资源的高效管理和可持续发展提供依据。

关键词: 喀斯特山地生态系统, 合成孔径雷达(SAR), 回归分析, 森林蓄积量估测, 优势树种

Abstract:

Karst mountain area is a special and fragile ecological landscape in the southwestern China.Forest optical remote sensing data in the regeion is not easy to obtain timely due to cloudy and rainy weather,affecting the investigation of forest resources in the ecosystem.Synthetic aperture radar (SAR)estimation technology is very suitable for quantitative evaluation of forest volume in cloudy mountain area,because radar has the ability to penetrate clouds onto the canopy,and its microwave can interact with the coronet and branches,resulting in all-weather observation of the forest.In this study,we selected Huishui county karst mountain area in Guizhou Province as the experimental area,and established a parameter model to estimate the forest reserves in the area by using SAR data and the ground data.We further analyzed the accuracy of the estimation from the model and expect that SAR remote sensing technology could facilitate more efficient management of the forest resources and the sustainable development of Guizhou Karst mountain ecosystem。

Key words: karst mountain ecosystem, synthetic aperture radar, regression analysis, forest volume estimation, dominant species

中图分类号: