欢迎访问林草资源研究

林业资源管理 ›› 2016›› Issue (1): 112-117.doi: 10.13466/j.cnki.lyzygl.2016.01.019

• 科学研究 • 上一篇    下一篇

基于Landsat8 OLI数据的山杏柠条灌木林碳储量遥感模型研究

刘芬1, 魏江生1, 周梅1, 赵鹏武1, 舒洋1, 吴华军2, 海青2   

  1. 1.内蒙古农业大学 生态环境学院,呼和浩特 010019;
    2.内蒙古赤峰市巴林右旗林业局,内蒙古 大板, 025150
  • 收稿日期:2015-10-14 修回日期:2015-11-25 发布日期:2020-11-04
  • 通讯作者: 魏江生(1969-),男,内蒙古鄂尔多斯人,博士,硕导,主要从事土壤环境与植物生长研究。Email:weijiangsheng1969@163.com
  • 作者简介:刘芬(1990-),女,内蒙古鄂尔多斯人,在读硕士,主要从事土壤环境与植物生长研究。Email:1347763805@qq.com
  • 基金资助:
    内蒙古科技计划项目(20120421;20120419);应对气候变化专项资金能力建设项目

Study on Remote Sensing Models of Armeniaca Sibirica,Caragana Korshinskii Shrubberies' Carbon Storage Based on Landsat8 OLI Remote Sensing Data

LIU Fen1, WEI Jiangsheng1, ZHOU Mei1, ZHAO Pengwu1, SHU Yang1, WU Huajun2, HAI Qing2   

  1. 1. College of Ecology and Environmental Science,Inner Mongolia Agricultural University,Hohhot 010019,China;
    2. Balinyouqi Forestry Bureau,Chifeng City of Inner Mongolia,Daban 025150,Inner Mongolia,China
  • Received:2015-10-14 Revised:2015-11-25 Published:2020-11-04

摘要: 基于Landsat8 OLI多光谱数据和内蒙古兴安盟地区189块山杏、柠条灌木林实测样地数据,利用多元逐步回归法建立地上碳储量遥感模型,并对模型的预估精度进行了分析。结果表明:选取包括单波段、波段组合、缨帽变换、植被指数及主成分分析共5组27个特征变量,通过分析27个特征变量与灌木林地上碳储量的Pearson相关性,进行特征变量的优化选取并建立模型。天然山杏、人工山杏和人工柠条3种灌木类型地上碳储量遥感模型的决定系数分别为0.61,0.86,0.74,预估精度分别为71%,77%,73%。优化的3种遥感模型可以应用到内蒙古范围内天然山杏、人工山杏和人工柠条林地上碳储量评估工作中。

关键词: Landsat8 OLI, 灌木林, 碳储量模型, 特征变量选取, 逐步回归法

Abstract: In Xing'an League of Inner Mongolia,we made use of Landsat8 OLI imagery and a survey of 189 plots in Armeniacasibirica,Caraganakorshinskii shrubberies,and multiple regression to establish remote sensing ground carbon storage model and analyze the prediction accuracy of the model.The results show that 27 independent variables were selected out,including single band,band combination,tasseled cap transformation,vegetation index and principal components.The Pearson correlation analysis between the 27 independent variables and shrubbery carbon storage has been calculated to select the better characteristic variables.The coefficients of determination of natural Armeniacasibirica,artificial Armeniacasibirica and artificial Caraganakorshinskii remote sensing above ground carbon storage model are 0.61,0.86 and 0.74 respectively;The prediction accuracy values of the model are 71%,77% and 73% respectively,the optimization of three kinds of remote sensing models can be applied to a range within the Inner Mongolia natural Armeniacasibirica,artificial Armeniacasibirica and artificial Caraganakorshinskii above ground carbon stocks assessment.

Key words: Landsat8 OLI, shrubbery, carbon storage model, characteristic variable selection, stepwise regression

中图分类号: