欢迎访问林草资源研究

林业资源管理 ›› 2020›› Issue (3): 111-117.doi: 10.13466/j.cnki.lyzygl.2020.03.021

• 技术应用 • 上一篇    下一篇

基于机载大光斑激光雷达的森林冠层高度估测

孙忠秋1(), 吴发云1(), 高显连1, 高金萍1, 胡杨2   

  1. 1.国家林业和草原局调查规划设计院,北京 100714
    2.北京林业大学,北京 100091
  • 收稿日期:2020-03-02 修回日期:2020-03-20 出版日期:2020-06-28 发布日期:2020-07-30
  • 通讯作者: 吴发云
  • 作者简介:孙忠秋(1987-),女,黑龙江哈尔滨人,工程师,主要从事林业信息技术及卫星遥感的林业应用等工作。Email: qiuqiu8708@163.com
  • 基金资助:
    2019行业管理专项经费-陆地碳卫星星机地综合实验(2019-21-5**)

Estimation of Forest Canopy Height Based on Large-Footprint Airborne LiDAR Data

SUN Zhongqiu1(), WU Fayun1(), GAO Xianlian1, GAO Jinping1, HU Yang2   

  1. 1. Academy of Inventory and Planning,National Forestry and Grassland Administration,P.R.China 100714
    2. Beijing Forestry University,Beijing 100091
  • Received:2020-03-02 Revised:2020-03-20 Online:2020-06-28 Published:2020-07-30
  • Contact: Fayun WU

摘要:

利用国家林业和草原局卫星林业应用中心设计研发的机载林业探测大光斑激光雷达回波数据,基于Matlab2014a软件对光斑数据进行数据读取、背景噪声估计、信号起始位置判断、地面回波位置确定,从而估测光斑位置下森林冠层高度。通过选取样地位置附近连续10组大光斑回波波形对森林冠层高度进行估测,并与样地实测森林冠层高度进行精度验证。结果表明:机载林业探测大光斑回波波形对7种森林冠层高度均有不同程度的估测能力,其中以胸高断面积加权平均高、优势树种平均木平均高估测效果最好,相对误差分别为4.36%和8.29%,RMSE(均方根误差)为1.40 m和1.55 m;对优势木平均高H、优势木平均高D估测能力最差,相对误差为19.81%和22.00%,RMSE为2.99m和3.34m。

关键词: 林业, 机载, 大光斑激光雷达, 森林冠层高度, 估测

Abstract:

Using the echo waveform data collected by the large-footprint airborne forestry LiDAR designed by Satellite Forestry Application Center of National Forestry and Grassland Administration,a series of parameters like background noise,signal starting position,ground echo position were processed based on Matlab 2014a,so as to estimate forest canopy height.Ten echo waveforms near the sample plot were selected to estimate the height of forest canopy.And the accuracy of the forest canopy height estimated by echo waveform data was verified.The results showed that echo waveform collected by airborne large-footprint LiDAR had different degrees of ability to estimate seven kinds of forest canopy height.Estimation of the weighted basal area average height and the average wood of dominant tree's average height was the best,with the relative errors of 4.36% and 8.29%,RMSE of 1.40 m and 1.55 m.For the average height H and the average height D of the dominant tree,the estimation ability was the worst,with the relative errors of 19.81% and 22.00%,and RMSE of 2.99 m and 3.34 m.

Key words: forestry, airborne, large-footprint LiDAR, forest canopy height, estimation

中图分类号: