欢迎访问林草资源研究

林业资源管理 ›› 2013›› Issue (5): 76-79.

• 科学研究 • 上一篇    下一篇

高分辨率遥感影像森林覆盖变化检测研究

付强, 代华兵, 薛晓坡   

  1. 广西林业勘测设计院,南宁 530011
  • 收稿日期:2013-06-25 修回日期:2013-08-26 出版日期:2013-10-28 发布日期:2020-11-23
  • 作者简介:付强(1983-),男,湖北人,工程师,硕士,主要从事森林资源监测及遥感应用研究。Email:fuqiang3050444@163.com
  • 基金资助:
    广西自然科学基金青年基金项目(2012GXNSFBA053078)

Forest Cover Change Detection by Using High-resolution Remote Sensing Image

FU Qiang, DAI Huabing, XUE Xiaopo   

  1. Guangxi Forest Inventory & Planning Institute,Nannning 530011,China
  • Received:2013-06-25 Revised:2013-08-26 Online:2013-10-28 Published:2020-11-23

摘要: 以天绘一号和资源一号两期遥感影像为研究对象,采用面向对象多尺度分割和基于特征值阈值的方法提取采伐迹地,将研究区分成采伐迹地和非采伐迹地两类,使用分类后比较法检测森林覆盖变化。结果表明:国产的天绘一号和资源一号遥感影像有较好的内部几何一致性,正射校正后的两期影像可以达到1个像元内的校准精度。遥感变化检测的面积精度和重合率与实际变化相比较,分别为93.1%和95.0%,该方法能较好地检测出森林覆盖变化,适合于县域森林资源年度更新。

关键词: 遥感, 森林覆盖, 面向对象, 变化检测

Abstract: Setellite-1 and Resources-1 remote sensing images are used as research data. This paper uses method of object-oriented multi-scale segmentation and spectral feature threshold to extract cut-over areas.Study area included harvested area and non-harvested area.Forest cover change has been detected by post-classification.The results showed that the imagery has good internal geometric consistency,the orthorectification accuracy between two-period imageries can be less than one pixel.The area accuracy of remote sensing change detection and the coincidence rate compared with the actual changes were 93.1% and 95.0%.This method can better detect changes of forest cover.It is suitable for annual update of forest resource data for the county.

Key words: remote sensing, forest cover, object-oriented, change detection

中图分类号: