Forest and Grassland Resources Research ›› 2023›› Issue (6): 105-112.doi: 10.13466/j.cnki.lczyyj.2023.06.013
• Technical Application • Previous Articles Next Articles
TANG Jiajun(), WANG Gang, CHAI Zongzheng()
Received:
2023-08-14
Revised:
2023-11-13
Online:
2023-12-28
Published:
2024-02-21
CLC Number:
TANG Jiajun, WANG Gang, CHAI Zongzheng. Single-TreeVolume Estimation of Pinus massoniana based on Airborne LiDAR Point Cloud[J]. Forest and Grassland Resources Research, 2023, (6): 105-112.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lczyyj.2023.06.013
Tab.1
Overview of sample plot
样地 编号 | 海拔/m | 坡向 | 坡位 | 坡度/(°) | 林分密度/ (株/hm2) | 平均胸径/ cm | 平均树高/ m | 平均冠幅/ m | 林分蓄积/ m3 | 郁闭度 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 438.67 | 东北 | 中 | 10 | 285 | 29.4 | 18.37 | 3.63 | 23.22 | 0.5 |
2 | 1 443.12 | 东 | 上 | 35 | 465 | 26.9 | 17.62 | 3.61 | 25.94 | 0.6 |
3 | 1 415.47 | 西南 | 中 | 20 | 435 | 19.7 | 14.11 | 2.28 | 19.72 | 0.7 |
4 | 1 423.57 | 西 | 下 | 10 | 795 | 16.0 | 11.39 | 2.56 | 9.88 | 0.8 |
5 | 1 435.70 | 西南 | 上 | 5 | 450 | 23.6 | 17.47 | 3.54 | 24.55 | 0.6 |
6 | 1 430.58 | 东南 | 下 | 5 | 270 | 34.5 | 17.56 | 4.02 | 16.71 | 0.5 |
7 | 1 421.73 | 南 | 下 | 3 | 255 | 33.0 | 19.99 | 3.56 | 40.48 | 0.5 |
8 | 1 394.37 | 东 | 中 | 20 | 1 095 | 16.6 | 13.37 | 2.25 | 12.46 | 0.7 |
9 | 1 386.17 | 东南 | 中 | 30 | 1 935 | 14.2 | 11.57 | 1.51 | 14.22 | 0.8 |
10 | 1 402.63 | 西北 | 下 | 20 | 240 | 22.7 | 15.30 | 3.09 | 35.88 | 0.6 |
Tab.5
The goodness of fit of the optimal model with different numbers of parameters
模型编号 | 参数数量 | 模型表达式 | R2 | RMSE | MAE | MAPE | AIC |
---|---|---|---|---|---|---|---|
M1 | 2 | V=0.0001×H2.972 | 0.773 0 | 0.399 4 | 0.241 4 | 0.564 8 | 279.008 0 |
M2 | 2 | V=0.0001×H2.982C0.007 | 0.772 8 | 0.399 9 | 0.241 4 | 5.656 0 | 279.146 0 |
M3 | 2 | V=0.0001×H2.976S0.007 | 0.772 9 | 0.399 4 | 0.241 4 | 0.565 3 | 279.092 0 |
M4 | 2 | V=0.0692×C1.737S-0.185 | 0.219 7 | 0.740 7 | 0.505 3 | 1.882 0 | 612.108 0 |
M5 | 2 | V=0.1091×C-1.576 | 0.278 2 | 0.712 2 | 0.477 6 | 1.673 7 | 591.002 0 |
M6 | 2 | V=0.0766×S-1.191 | 0.294 6 | 0.703 9 | 0.466 7 | 1.619 7 | 584.772 0 |
M7 | 3 | V=0.0671×C0.5999S-1.456 | 0.295 5 | 0.703 0 | 0.466 0 | 1.617 0 | 586.432 0 |
M8 | 3 | V=0.0001×H2.983S-0.107 | 0.773 4 | 0.399 3 | 0.243 7 | 0.562 0 | 280.577 0 |
M9 | 3 | V=0.0001×H2.983C-0.473S0.242 | 0.773 8 | 0.399 1 | 0.241 2 | 0.564 7 | 280.019 0 |
M10 | 3 | V=0.0001×H2.991C-0.306 | 0.774 1 | 0.398 4 | 0.244 3 | 0.560 0 | 279.701 0 |
M11 | 4 | V=0.0001×H2.989C-0.473S0.126 | 0.774 0 | 0.398 3 | 0.243 3 | 0.560 5 | 281.495 0 |
[1] | 解宇阳, 王彬, 姚扬, 等. 基于无人机激光雷达遥感的亚热带常绿阔叶林群落垂直结构分析[J]. 生态学报, 2020, 40(3):940-951. |
[2] | 庞勇, 李增元, 陈尔学, 等. 激光雷达技术及其在林业上的应用[J]. 林业科学, 2005(3):129-136. |
[3] |
张瑞英, 庞勇, 李增元, 等. 结合机载LiDAR和LANDSAT ETM+数据的温带森林郁闭度估测[J]. 植物生态学报, 2016, 40(2):102-115.
doi: 10.17521/cjpe.2014.0366 |
[4] | 李增元, 赵磊, 李堃, 等. 合成孔径雷达森林资源监测技术研究综述[J]. 南京信息工程大学学报(自然科学版), 2020, 12(2):150-158. |
[5] | 李增元, 刘清旺, 庞勇. 激光雷达森林参数反演研究进展[J]. 遥感学报, 2016, 20(5):1138-1150. |
[6] | 刘峰, 谭畅, 张贵, 等. 长白落叶松单木参数与生物量机载LiDAR估测[J]. 农业机械学报, 2013, 44(9):219-224. |
[7] | Li Wenkai, Guo Qinghua, Jakubowski M K, et al. A new method for segmenting individual trees from the lidar point cloud[J]. Photogrammetric Engineering & Remote Sensing, 2012, 78(1):75-84. |
[8] |
Gupta S, Weinacker H, Koch B. Comparative analysis of clustering-based approaches for 3-D single tree detection using airborne fullwave lidar data[J]. Remote Sensing, 2010, 2(4):968-989.
doi: 10.3390/rs2040968 |
[9] |
Maltamo M, Mustonen K, Hyyppä J, et al. The accuracy of estimating individual tree variables with airborne laser scanning in a boreal nature reserve[J]. Canadian Journal of Forest Research, 2004, 34(9):1791-1801.
doi: 10.1139/x04-055 |
[10] |
张海清, 李向新, 王成, 等. 结合DSM的机载LiDAR单木树高提取研究[J]. 地球信息科学学报, 2021, 23(10):1873-1881.
doi: 10.12082/dqxxkx.2021.210030 |
[11] | 付凯婷. 无人机遥感技术估算桉树蓄积量的研究[D]. 南宁: 广西大学, 2015. |
[12] |
Gleason C J, Im J. Forest biomass estimation from airborne LiDAR data using machine learning approaches[J]. Remote Sensing of Environment, 2012, 125:80-91.
doi: 10.1016/j.rse.2012.07.006 |
[13] | 庞勇, 李增元. 基于机载激光雷达的小兴安岭温带森林组分生物量反演[J]. 植物生态学报, 2012, 36(10):1095-1105. |
[14] | 于颖, 范文义, 李明泽, 等. 利用大光斑激光雷达数据估测树高和生物量[J]. 林业科学, 2010, 46(9):84-87. |
[15] |
Fu Liyong, Zeng Weisheng, Zhang Huiru, et al. Generic linear mixed-effects individual-tree biomass models for Pinus massoniana in southern China[J]. Southern Forests:A Journal of Forest Science, 2014, 76(1):47-56.
doi: 10.2989/20702620.2013.870389 |
[16] | 邢艳秋, 王立海. 基于森林调查数据的长白山天然林森林生物量相容性模型[J]. 应用生态学报, 2007(1):1-8. |
[17] | 唐守正, 张会儒, 胥辉. 相容性生物量模型的建立及其估计方法研究[J]. 林业科学, 2000(S1):19-27. |
[18] | 李旺, 牛铮, 王成, 等. 机载LiDAR数据估算样地和单木尺度森林地上生物量[J]. 遥感学报, 2015, 19(4):669-679. |
[19] | 马骏, 蔺东杰, 凌广明. 基于海量数据的二维凸包快速生成算法[J]. 计算机技术与发展, 2017, 27(2):42-45. |
[20] | 于东海, 冯仲科. 基于无人机倾斜航空影像的树冠体积测算方法[J]. 农业工程学报, 2019, 35(1):90-97. |
[21] | 胥辉. 两种生物量模型的比较[J]. 西南林学院学报, 2003(2):36-39. |
[22] | 刘浩然, 范伟伟, 徐永胜, 等. 基于无人机激光雷达点云的单木生物量估测[J]. 中南林业科技大学学报, 2021, 41(8):92-99. |
[23] | 武晓康, 王浩宇, 冯宝坤, 等. 基于无人机LiDAR的单木生物量估测[J]. 科学技术与工程, 2022, 22(34):15028-15035. |
[24] | 白明雄, 张超, 陈棋, 等. 基于无人机可见光遥感的单木树高提取方法研究[J]. 林业资源管理, 2021(1):164-172. |
[25] | 周杨, 王春林, 薛艳丽, 等. 无人机LiDAR森林蓄积量估测方法[J]. 遥感信息, 2023, 38(2):142-149. |
[26] | 夏忠胜, 朱松, 张江平, 等. 贵州省人工马尾松二元立木材积模型研究[J]. 林业资源管理, 2009(4):30-34. |
[27] | 曾伟生, 夏忠胜, 朱松, 等. 贵州省人工马尾松立木材积和地上生物量方程研建[J]. 林业科学, 2011, 47(3):96-101. |
[28] | 曾伟生, 贺东北, 蒲莹, 等. 含地域和起源因子的马尾松立木生物量与材积方程系统[J]. 林业科学, 2019, 55(2):75-86. |
[29] | 张伟, 岑巨延, 冯建强, 等. 基于树高和冠幅的广西桉树二元立木材积模型研建[J]. 广西科学, 2022, 29(4):785-792. |
[30] | 朱俊峰, 刘清旺, 崔希民, 等. 地基与无人机激光雷达结合提取单木参数[J]. 农业工程学报, 2022, 38(14):51-58. |
[31] | 覃静婷, 刘世男, 张丽琼, 等. 无人机遥感影像提取的单木冠幅数据在桉树林分蓄积量估测中的应用[J]. 东北林业大学学报, 2023, 51(6):96-102. |
[32] | 邓梓杰, 喜文飞, 刘鑫, 等. 基于三维激光扫描技术的单木生长监测研究[J]. 江西科学, 2022, 40(5):902-905. |
[33] | 康庆江, 李丹丹, 贾炜玮. 基于TLS数据构建落叶松树干削度方程[J]. 林业科技, 2022, 47(3):41-46. |
[34] | 许天一, 甄贞, 赵颖慧. 基于UAV-LiDAR和误差变量回归的落叶松人工林单木参数估测[J]. 中南林业科技大学学报, 2023, 43(7):52-64. |
[35] | 朱泊东, 罗洪斌, 金京, 等. 高郁闭度人工林无人机激光雷达单木分割方法优化[J]. 林业科学, 2022, 58(9):48-59. |
[36] | 王璐璐. 基于激光雷达数据的红树林单木参数提取与估测[D]. 海口: 海南大学, 2020. |
[1] | TANG Jiajun, CHAI Zongzheng. Remote Sensing Estimation of Average Diameter at Breast Height of Forest Stands Based on Airborne LiDAR and Machine Learning Algorithms [J]. Forest and Grassland Resources Research, 2024, 0(1): 56-64. |
[2] | YANG Shenjun, TAN Wei, CHEN Xinyu, TANG Jiajun, YANG Zejun, WU Yujie. Study on Stand Spatial Structure of Typical Pinus massoniana Mixed Forest in Liping County of Guizhou Province [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(3): 105-114. |
[3] | XING Yuanjun, WEN Kunjian, GUO Xiaoni, SONG Yabin, HU Zhongyue, JIANG Tengyu, HE Zijing. Single-Tree Crown Delineation in Plain Afforestation Areas Based on Mask R-CNN [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(3): 115-120. |
[4] | LI Cheng, TANG Daisheng, JIA Jianbo. Estimation of Pinus massoniana Index Based on Geostatistical Spatial Analysis [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(3): 128-133. |
[5] | ZENG Weisheng, YANG Xueyun. Analysis of General Status and Examination of Estimation Errors for One-Variable Tree Volume Tables in China [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(2): 43-49. |
[6] | ZHANG Xinjie, ZHENG Yanfeng, WEN Kunjian, WANG Pengjie, WU Fayun. Estimation of Single Tree Factor of Eucalyptus by Merging Airborne and Backpack LiDAR [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(6): 131-137. |
[7] | ZHANG Min, WANG Jian, HAN Tianyi, OUYANG Xunzhi, PAN Ping, LIU Dongdong. Characteristics of Carbon Density and Its Influencing Factors of Pinus massoniana Forest Based on CBM-CFS3 Model [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(6): 44-53. |
[8] | FU Anmin, GAO Xianlian, WU Fayun, GAO Jinping. A Method to Validate Airborne LIDAR CHM Producton Individual Tree Level [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(1): 114-123. |
[9] | HE Peng, CHEN Zhenxiong, LIU Xianzhao. Developing Stand Basal Area Growth Models for Pinus massoniana and Cunninghamia lanceolata in Hunan Province [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(5): 56-61. |
[10] | LONG Fei, YUE Cairong, JIN Jing, LI Chungan, LUO Hongbin, XU Wanting. Study on the Inversion of Basal Area from Airborne LiDAR Data [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(5): 62-69. |
[11] | PU Ying, ZENG Weisheng, YANG Fan. Tree Height-Diameter Regression Models Development and One-Variable Tree Volume Tables Examination in Beijing [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(3): 62-66. |
[12] | WANG Yihe. Analysis on Effect of Inter-planting Broad-leaved Trees on Quality Improvement of Pinus massoniana Stand in Soil Erosion Area —A Case Study in Changting,Fujian Province [J]. FOREST RESOURCES WANAGEMENT, 2020, 0(6): 116-122. |
[13] | SUN Zhongqiu, WU Fayun, HU Yang, GAO Xianlian, Gao Jingping. Determination and Estimation of Pinus massoniana Stand Volume and Saturation Point Based on Landsat-8 OLI Data [J]. FOREST RESOURCES WANAGEMENT, 2020, 0(6): 135-142. |
[14] | CHEN Min, YE Jinsheng, LIU Ping. Site Quality Evaluation on Pinus massoniana Based on the Data of National Forest Inventory [J]. FOREST RESOURCES WANAGEMENT, 2020, 0(6): 85-89. |
[15] | XU Can, JIANG Tengda. A Method of Estimating Forest Stock Volume Parameters from Airborne LiDAR Data [J]. FOREST RESOURCES WANAGEMENT, 2020, 0(3): 105-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||